Graphic Card Intense Tasks bottleneck calculator
Intel Core i7-3520M and NVIDIA GeForce GTX 1080 (Max-Q Design)
Graphic Card Intense Tasks
11520 × 2160
1 monitor
1. Select purpose
Currently selected:
Graphic Card Intense Tasks
2. Select processor
Currently selected:
Intel Core i7-3520M
3. Select graphic card
Currently selected:
NVIDIA GeForce GTX 1080 (Max-Q Design)
4. Select resolution
Currently selected:
11520 × 2160 resolution
(1 monitor)
Calculation result
Bottleneck percentage
The Intel Core i7-3520M may serve as a bottleneck for the NVIDIA GeForce GTX 1080 (Max-Q Design) in the Graphic Card Intense Tasks with 11520 × 2160 and 1 monitor. Although the NVIDIA GeForce GTX 1080 (Max-Q Design) is engineered to manage heavy graphical tasks, the Intel Core i7-3520M might lack the processing power needed to fully unlock the NVIDIA GeForce GTX 1080 (Max-Q Design) capabilities. This imbalance may inhibit the overall efficiency of your system, slowing down processing and possibly compromising graphical fidelity. For a more harmonious hardware setup, upgrading to a high-performing processor that can meet the demands of current software and games is advised.
In a configuration featuring the Intel Core i7-3520M and NVIDIA GeForce GTX 1080 (Max-Q Design), with a screen resolution of 11520 × 2160 and 1 monitor, the system experiences a 1.9% bottleneck for Graphic Card Intense Tasks.
Processor and graphic card utilizations
In a computing setup featuring the Intel Core i7-3520M and NVIDIA GeForce GTX 1080 (Max-Q Design), under the context of Graphic Card Intense Tasks with a screen resolution of 11520 × 2160 and 1 monitor, the processor is expected to have an utilization rate of 83.2%, while the graphics card is projected to be utilized at 73.8%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
In gaming scenarios, your NVIDIA GeForce GTX 1080 (Max-Q Design) might not attain its full performance potential due to a lack of optimal utilization. This happens when the Intel Core i7-3520M fails to handle and transmit data to the NVIDIA GeForce GTX 1080 (Max-Q Design) at an adequate speed. As a result, the Intel Core i7-3520M will be operating at its maximum capacity, while the NVIDIA GeForce GTX 1080 (Max-Q Design) remains underutilized.
When it comes to bottlenecks, a processor bottleneck is generally viewed as more detrimental than a graphics card bottleneck. In cases of a processor bottleneck, the Intel Core i7-3520M capacity reaches its limits, which may adversely affect other applications running concurrently. This situation can result in diminished responsiveness and multi-tasking capabilities.
Moreover, due to the processor bottleneck, the system might not leverage the full performance capabilities of the NVIDIA GeForce GTX 1080 (Max-Q Design). Consequently, there could be restrictions in graphical rendering, frame rates, and the overall gaming experience.
To visualize these bottlenecks, consider examining our heatmap. On this heatmap, the X-axis represents the CPU Score, while the Y-axis denotes the GPU Score. A quick glance at this heatmap can offer invaluable insights into potential bottlenecks within various system configurations.
By correlating your Intel Core i7-3520M CPU Score and NVIDIA GeForce GTX 1080 (Max-Q Design) GPU Score on the heatmap, you can acquire a more comprehensive understanding of how these components interact and where the bottlenecks might occur. Making well-informed hardware choices based on this heatmap analysis can lead to a more balanced and efficient computing setup for your specific needs.
Bottleneck solutions
Replace processor
When the processor becomes the system's bottleneck, upgrading it is often the most straightforward way to improve performance. Opting for a faster processor with more cores and higher clock speeds can effectively minimize or even eliminate the bottleneck, making it easier for your graphics card to perform to its maximum capability.
- Intel Core i7-3612QE Full details
- Intel Core i7-2760QM Full details
- Intel Core i7-2820QM Full details
- Intel Core i3-8121U Full details
- Intel Core i7-2920XM Full details
- AMD Athlon 220GE Full details
- Intel Core i5-10210Y Full details
- Intel Core i7-2860QM Full details
- Intel Core i7-3612QM Full details
- Intel Core i5-6300HQ Full details
- Intel Core i7-3632QM Full details
- Intel Core i7-2960XM Full details
- Intel Core i7-3635QM Full details
- Intel Core i5-7260U Full details
- AMD Athlon Gold 3150U Full details
- Intel Core i7-2720QM Full details
- Intel Core i7-2710QE Full details
- Intel Core i7-7660U Full details
- Intel Core i3-8145UE Full details
- Intel Core i7-7567U Full details
- Intel Core i3-8109U Full details
- Intel Core i3-1000NG4 Full details
- Intel Core i7-6650U Full details
- Intel Core i5-7267U Full details
- Intel Core i7-7500U Full details
- Intel Core i5-7300U Full details
- AMD Ryzen 3 2200U Full details
- Intel Core i7-7600U Full details
- Intel Core i7-2670QM Full details
- Intel Core i5-7287U Full details
- Intel Core i7-6567U Full details
- Intel Core i7-7560U Full details
- Intel Core i3-8145U Full details
- AMD Ryzen 3 3200U Full details
- Intel Core i5-6287U Full details
- Intel Core i7-2675QM Full details
- AMD Ryzen 3 3250U Full details
- Intel Core i5-7360U Full details
- Intel Core i3-10110U Full details
- AMD Athlon 300U Full details
- AMD A8-7680 Full details
- Intel Core i5-6300U Full details
- Intel Core i7-6500U Full details
- AMD FX-9830P Full details
- Intel Celeron N5100 Full details
- Intel Core i7-6560U Full details
- Intel Core i7-2635QM Full details
- Intel Core i5-4340M Full details
- Intel Core i5-7200U Full details
- Intel Core i5-6267U Full details
Impact of Changing Screen Resolution
Interestingly, if you're facing a processor bottleneck, altering the screen resolution may have a counterintuitive impact. Elevating the screen resolution will primarily stress the graphics card, thereby reducing the proportion of work that the processor needs to do in certain tasks. This makes it less likely that the processor will max out, though it does not replace the benefits of a processor upgrade for a balanced system.
Read moreReplace graphic cards
If the processor is causing the bottleneck, replacing the graphic card isn't generally recommended unless you're also planning to upgrade the processor. Downgrading your graphics card to better match the processor might alleviate the bottleneck, but it often results in a decrease in overall system performance, especially in graphics-heavy tasks like gaming or 3D rendering.
- AMD Radeon RX 7600S Full details
- AMD Radeon RX 6700M Full details
- NVIDIA RTX A3000 Full details
- NVIDIA Quadro RTX 5000 (Max-Q Design) Full details
- AMD Radeon RX 6600M Full details
- NVIDIA GeForce RTX 2070 Super (Max-Q Design) Full details
- NVIDIA RTX 1000 Ada Generation Full details
- NVIDIA GeForce RTX 2080 Super (Max-Q Design) Full details
- NVIDIA GeForce RTX 3060 Full details
- NVIDIA GeForce RTX 2080 (Max-Q Design) Full details
- AMD Radeon RX 6800M Full details
- NVIDIA Quadro RTX 4000 (Max-Q Design) Full details
- NVIDIA Quadro P5200 Full details
- NVIDIA GeForce RTX 2070 Full details
- NVIDIA Quadro RTX 4000 Full details
- Intel Arc A770M Full details
- NVIDIA GeForce RTX 2070 (Max-Q Design) Full details
- NVIDIA GeForce RTX 2060 Full details
- AMD Radeon RX 7600M XT Full details
- NVIDIA Quadro RTX 3000 Full details
- NVIDIA RTX A2000 Full details
- NVIDIA GeForce GTX 1070 Full details
- NVIDIA GeForce RTX 3050 Ti Full details
- NVIDIA GeForce GTX 1660 Ti Full details
- NVIDIA GeForce RTX 2060 (Max-Q Design) Full details
- NVIDIA RTX A1000 Full details
- NVIDIA GeForce GTX 1070 (Max-Q Design) Full details
- AMD Radeon Pro 5600M Full details
- AMD Radeon RX 6550M Full details
- NVIDIA GeForce GTX 1660 Ti (Max-Q Design) Full details
- AMD Radeon RX 5600M Full details
- NVIDIA GeForce RTX 3050 Full details
- NVIDIA Quadro RTX 3000 (Max-Q Design) Full details
- NVIDIA GeForce GTX 1060 Full details
- NVIDIA GeForce GTX 1060 (Max-Q Design) Full details
- AMD Radeon RX 6500M Full details
- NVIDIA GeForce RTX 2050 Full details
- NVIDIA GeForce GTX 1650 Ti Full details
- NVIDIA GeForce GTX 980M Full details
- NVIDIA Quadro T2000 Full details
- NVIDIA GeForce GTX 1650 Full details
- AMD Radeon 780M Full details
- NVIDIA Quadro M5000M Full details
- NVIDIA Quadro T2000 (Max-Q Design) Full details
- AMD Radeon Pro 5500M Full details
- NVIDIA RTX A500 Full details
- NVIDIA Quadro T1000 (Max-Q Design) Full details
- NVIDIA Quadro P3000 Full details
- NVIDIA Quadro T1000 Full details
- NVIDIA GeForce GTX 1650 Ti (Max-Q Design) Full details
Impact of Changing Screen Resolution
Increasing the screen resolution in this case will demand more from your graphics card and can make the processor's bottleneck less noticeable in some scenarios, but again, it won't entirely solve the underlying problem.
Read moreBottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.