Graphic Card Intense Tasks bottleneck calculator
Intel Celeron M and Intel Iris Plus 640
Graphic Card Intense Tasks
1360 × 768
1 monitor
1. Select purpose
Currently selected:
Graphic Card Intense Tasks
2. Select processor
Currently selected:
Intel Celeron M
3. Select graphic card
Currently selected:
Intel Iris Plus 640
4. Select resolution
Currently selected:
1360 × 768 resolution
(1 monitor)
Calculation result
Bottleneck percentage
The Intel Celeron M may serve as a bottleneck for the Intel Iris Plus 640 in the Graphic Card Intense Tasks with 1360 × 768 and 1 monitor. Although the Intel Iris Plus 640 is engineered to manage heavy graphical tasks, the Intel Celeron M might lack the processing power needed to fully unlock the Intel Iris Plus 640 capabilities. This imbalance may inhibit the overall efficiency of your system, slowing down processing and possibly compromising graphical fidelity. For a more harmonious hardware setup, upgrading to a high-performing processor that can meet the demands of current software and games is advised.
In a configuration featuring the Intel Celeron M and Intel Iris Plus 640, with a screen resolution of 1360 × 768 and 1 monitor, the system experiences a 9.9% bottleneck for Graphic Card Intense Tasks.
Processor and graphic card utilizations
In a computing setup featuring the Intel Celeron M and Intel Iris Plus 640, under the context of Graphic Card Intense Tasks with a screen resolution of 1360 × 768 and 1 monitor, the processor is expected to have an utilization rate of 81.9%, while the graphics card is projected to be utilized at 67.6%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
In gaming scenarios, your Intel Iris Plus 640 might not attain its full performance potential due to a lack of optimal utilization. This happens when the Intel Celeron M fails to handle and transmit data to the Intel Iris Plus 640 at an adequate speed. As a result, the Intel Celeron M will be operating at its maximum capacity, while the Intel Iris Plus 640 remains underutilized.
When it comes to bottlenecks, a processor bottleneck is generally viewed as more detrimental than a graphics card bottleneck. In cases of a processor bottleneck, the Intel Celeron M capacity reaches its limits, which may adversely affect other applications running concurrently. This situation can result in diminished responsiveness and multi-tasking capabilities.
Moreover, due to the processor bottleneck, the system might not leverage the full performance capabilities of the Intel Iris Plus 640. Consequently, there could be restrictions in graphical rendering, frame rates, and the overall gaming experience.
To visualize these bottlenecks, consider examining our heatmap. On this heatmap, the X-axis represents the CPU Score, while the Y-axis denotes the GPU Score. A quick glance at this heatmap can offer invaluable insights into potential bottlenecks within various system configurations.
By correlating your Intel Celeron M CPU Score and Intel Iris Plus 640 GPU Score on the heatmap, you can acquire a more comprehensive understanding of how these components interact and where the bottlenecks might occur. Making well-informed hardware choices based on this heatmap analysis can lead to a more balanced and efficient computing setup for your specific needs.
Bottleneck solutions
Replace processor
When the processor becomes the system's bottleneck, upgrading it is often the most straightforward way to improve performance. Opting for a faster processor with more cores and higher clock speeds can effectively minimize or even eliminate the bottleneck, making it easier for your graphics card to perform to its maximum capability.
- Intel Core i3-330UM Full details
- Intel Celeron U3400 Full details
- AMD Turion 64 X2 Mobile TL-56 Full details
- Intel Core2 Duo U7300 Full details
- AMD Athlon 64 X2 QL-62 Full details
- AMD Athlon II Neo K345 Full details
- Intel Core2 Duo T5300 Full details
- Intel Pentium T2310 Full details
- AMD E1-6010 Full details
- AMD Turion 64 X2 Mobile TL-52 Full details
- Intel Core2 Duo T5500 Full details
- AMD TurionX2 Mobile RM-70 Full details
- Intel Atom Z3735F Full details
- Intel Pentium T2330 Full details
- Intel Celeron N2830 Full details
- Intel Celeron T1600 Full details
- Intel Pentium U5400 Full details
- AMD Turion X2 Mobile RM-70 Full details
- Intel Atom Z3735E Full details
- Intel Pentium T2370 Full details
- Intel Core2 Duo T5250 Full details
- AMD Turion RM-70 Full details
- Intel Celeron 867 Full details
- Intel Pentium T2390 Full details
- Intel Celeron 857 Full details
- AMD E1-6015 Full details
- Intel Core2 Duo U9600 Full details
- Intel Celeron U3600 Full details
- Intel Core2 Duo T5450 Full details
- Intel Celeron 847E Full details
- Intel Core2 Duo T5670 Full details
- Intel Pentium 2129Y Full details
- Intel Celeron N3050 Full details
- Intel Celeron N2840 Full details
- AMD E1-7010 Full details
- Intel Core2 Duo T5470 Full details
- AMD E1-2500 Full details
- Intel Atom Z3745D Full details
- AMD E-450 Full details
- Intel Core2 Duo U9300 Full details
- Intel Atom N2800 Full details
- Intel Core Duo T2600 Full details
- Intel Core2 Duo L7100 Full details
- Intel Core2 Duo T5200 Full details
- AMD Turion 64 X2 Mobile TL-50 Full details
- Intel Celeron 925 Full details
- Intel Celeron SU2300 Full details
- AMD Turion 64 X2 Mobile TL-58 Full details
- AMD G-T56N Full details
- Intel Celeron 847 Full details
Impact of Changing Screen Resolution
Interestingly, if you're facing a processor bottleneck, altering the screen resolution may have a counterintuitive impact. Elevating the screen resolution will primarily stress the graphics card, thereby reducing the proportion of work that the processor needs to do in certain tasks. This makes it less likely that the processor will max out, though it does not replace the benefits of a processor upgrade for a balanced system.
Read moreReplace graphic cards
If the processor is causing the bottleneck, replacing the graphic card isn't generally recommended unless you're also planning to upgrade the processor. Downgrading your graphics card to better match the processor might alleviate the bottleneck, but it often results in a decrease in overall system performance, especially in graphics-heavy tasks like gaming or 3D rendering.
- AMD Radeon HD 8790M Full details
- NVIDIA GeForce 930A Full details
- AMD Radeon R9 M375 Full details
- NVIDIA GeForce 930MX Full details
- NVIDIA GeForce GT 750M Full details
- NVIDIA GeForce 940M Full details
- NVIDIA GeForce 830A Full details
- AMD Radeon R9 M265X Full details
- NVIDIA Quadro M500M Full details
- NVIDIA GeForce 840A Full details
- NVIDIA GeForce GPU Full details
- AMD Radeon R9 M270X Full details
- NVIDIA GeForce GT 650M Full details
- NVIDIA GeForce GT 745A Full details
- NVIDIA GeForce GTX 560M Full details
- NVIDIA GeForce GTX 460M Full details
- AMD Radeon R7 M260X Full details
- AMD Radeon HD 8750M Full details
- NVIDIA GeForce 830M Full details
- NVIDIA GeForce 930M Full details
- AMD Radeon HD 6700M Full details
- AMD Radeon HD 8600 Full details
- AMD Radeon Vega 3 Mobile Full details
- AMD Radeon HD 8850M Full details
- AMD Mobility Radeon HD 5870 Full details
- NVIDIA GeForce 920MX Full details
- NVIDIA GeForce 840M Full details
- NVIDIA GeForce GT 745M Full details
- AMD Radeon 610M Full details
- AMD Radeon R9 M275 Full details
- AMD Radeon HD 7690M Full details
- NVIDIA GeForce GT 640M Full details
- NVIDIA GeForce GT 645M Full details
- AMD Radeon HD 6750M Full details
- AMD Radeon HD 8700M Full details
- AMD Radeon HD 6770M Full details
- AMD Mobility Radeon HD 4850 Full details
- NVIDIA GeForce 920A Full details
- NVIDIA GeForce GT 730M Full details
- NVIDIA GeForce GT 445M Full details
- AMD Radeon HD 6800M Full details
- NVIDIA GeForce GT 740M Full details
- NVIDIA GeForce 825M Full details
- AMD Mobility Radeon HD 5000 Full details
- NVIDIA GeForce 730A Full details
- AMD Mobility Radeon HD 5850 Full details
- AMD Radeon HD 7730M Full details
- AMD Radeon HD 8730M Full details
- AMD Radeon HD 6650M Full details
- AMD FirePro M40003 Full details
Impact of Changing Screen Resolution
Increasing the screen resolution in this case will demand more from your graphics card and can make the processor's bottleneck less noticeable in some scenarios, but again, it won't entirely solve the underlying problem.
Read moreBottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.