Graphic Card Intense Tasks bottleneck calculator
Intel Core i3-10100T and NVIDIA GeForce RTX 3080 Ti
Graphic Card Intense Tasks
5120 × 2880
1 monitor
1. Select purpose
Currently selected:
Graphic Card Intense Tasks
2. Select processor
Currently selected:
Intel Core i3-10100T
3. Select graphic card
Currently selected:
NVIDIA GeForce RTX 3080 Ti
4. Select resolution
Currently selected:
5120 × 2880 resolution
(1 monitor)
Calculation result
Bottleneck percentage
The Intel Core i3-10100T may serve as a bottleneck for the NVIDIA GeForce RTX 3080 Ti in the Graphic Card Intense Tasks with 5120 × 2880 and 1 monitor. Although the NVIDIA GeForce RTX 3080 Ti is engineered to manage heavy graphical tasks, the Intel Core i3-10100T might lack the processing power needed to fully unlock the NVIDIA GeForce RTX 3080 Ti capabilities. This imbalance may inhibit the overall efficiency of your system, slowing down processing and possibly compromising graphical fidelity. For a more harmonious hardware setup, upgrading to a high-performing processor that can meet the demands of current software and games is advised.
In a configuration featuring the Intel Core i3-10100T and NVIDIA GeForce RTX 3080 Ti, with a screen resolution of 5120 × 2880 and 1 monitor, the system experiences a 3.3% bottleneck for Graphic Card Intense Tasks.
Processor and graphic card utilizations
In a computing setup featuring the Intel Core i3-10100T and NVIDIA GeForce RTX 3080 Ti, under the context of Graphic Card Intense Tasks with a screen resolution of 5120 × 2880 and 1 monitor, the processor is expected to have an utilization rate of 83.2%, while the graphics card is projected to be utilized at 72.7%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
In gaming scenarios, your NVIDIA GeForce RTX 3080 Ti might not attain its full performance potential due to a lack of optimal utilization. This happens when the Intel Core i3-10100T fails to handle and transmit data to the NVIDIA GeForce RTX 3080 Ti at an adequate speed. As a result, the Intel Core i3-10100T will be operating at its maximum capacity, while the NVIDIA GeForce RTX 3080 Ti remains underutilized.
When it comes to bottlenecks, a processor bottleneck is generally viewed as more detrimental than a graphics card bottleneck. In cases of a processor bottleneck, the Intel Core i3-10100T capacity reaches its limits, which may adversely affect other applications running concurrently. This situation can result in diminished responsiveness and multi-tasking capabilities.
Moreover, due to the processor bottleneck, the system might not leverage the full performance capabilities of the NVIDIA GeForce RTX 3080 Ti. Consequently, there could be restrictions in graphical rendering, frame rates, and the overall gaming experience.
To visualize these bottlenecks, consider examining our heatmap. On this heatmap, the X-axis represents the CPU Score, while the Y-axis denotes the GPU Score. A quick glance at this heatmap can offer invaluable insights into potential bottlenecks within various system configurations.
By correlating your Intel Core i3-10100T CPU Score and NVIDIA GeForce RTX 3080 Ti GPU Score on the heatmap, you can acquire a more comprehensive understanding of how these components interact and where the bottlenecks might occur. Making well-informed hardware choices based on this heatmap analysis can lead to a more balanced and efficient computing setup for your specific needs.
Bottleneck solutions
Replace processor
When the processor becomes the system's bottleneck, upgrading it is often the most straightforward way to improve performance. Opting for a faster processor with more cores and higher clock speeds can effectively minimize or even eliminate the bottleneck, making it easier for your graphics card to perform to its maximum capability.
- AMD Ryzen 7 4700U Full details
- AMD Ryzen 5 4600U Full details
- Intel Core i7-1255U Full details
- Intel Core i9-9880H Full details
- Intel Core i3-1315U Full details
- AMD Ryzen 5 PRO 4650U Full details
- AMD Ryzen 3 PRO 7330U Full details
- AMD Ryzen 5 5500U Full details
- AMD Ryzen 3 PRO 5475U Full details
- AMD Ryzen 3 5425U Full details
- Intel Xeon E-2186M Full details
- AMD Ryzen 5 5500H Full details
- Intel Core i7-11370H Full details
- Intel Xeon E-2276M Full details
- Intel Core i7-10850H Full details
- Intel Core i7-11375H Full details
- Intel Core i7-10750H Full details
- Intel Core i7-8700B Full details
- Intel Core i7-1250U Full details
- Intel Core i9-8950HK Full details
- Intel Core i7-9750HF Full details
- Intel Core i7-1195G7 Full details
- Intel Core i7-9750H Full details
- Intel Xeon E-2176M Full details
- Intel Core i5-11300H Full details
- AMD Ryzen 5 4500U Full details
- Intel Core i3-1215U Full details
- Intel Core i5-11320H Full details
- Intel Core i7-9850H Full details
- AMD Ryzen 3 5400U Full details
- AMD Ryzen 3 7330U Full details
- AMD Ryzen 3 PRO 5450U Full details
- Intel Core i5-1230U Full details
- Intel Core i5-10500H Full details
- Intel Core i7-1165G7 Full details
- Intel Core i7-8750H Full details
- Intel Core i3-1125G4 Full details
- AMD Ryzen 3 5300U Full details
- Intel Core i5-1135G7 Full details
- Intel Core i5-1145G7 Full details
- Intel Core i5-9500TE Full details
- AMD Ryzen 3 PRO 4450U Full details
- Intel Core i7-11390H Full details
- Intel Core i5-1155G7 Full details
- Intel Core i7-8850H Full details
- Intel Core i7-1185G7 Full details
- Intel Core i5-8500B Full details
- AMD Ryzen 3 7320U Full details
- Intel Core i3-1305U Full details
- Intel Core i5-1038NG7 Full details
Impact of Changing Screen Resolution
Interestingly, if you're facing a processor bottleneck, altering the screen resolution may have a counterintuitive impact. Elevating the screen resolution will primarily stress the graphics card, thereby reducing the proportion of work that the processor needs to do in certain tasks. This makes it less likely that the processor will max out, though it does not replace the benefits of a processor upgrade for a balanced system.
Read moreReplace graphic cards
If the processor is causing the bottleneck, replacing the graphic card isn't generally recommended unless you're also planning to upgrade the processor. Downgrading your graphics card to better match the processor might alleviate the bottleneck, but it often results in a decrease in overall system performance, especially in graphics-heavy tasks like gaming or 3D rendering.
- NVIDIA GeForce RTX 4080 Full details
- NVIDIA RTX 5000 Ada Generation Full details
- NVIDIA RTX 4000 Ada Generation Full details
- AMD Radeon RX 7900M Full details
- NVIDIA GeForce RTX 4070 Full details
- NVIDIA RTX 3500 Ada Generation Full details
- NVIDIA GeForce RTX 3070 Ti Full details
- NVIDIA GeForce RTX 4060 Full details
- NVIDIA RTX A5500 Full details
- NVIDIA RTX A4500 Full details
- NVIDIA GeForce RTX 3080 Full details
- NVIDIA RTX 3000 Ada Generation Full details
- NVIDIA RTX A5000 Full details
- NVIDIA GeForce RTX 3070 Full details
- NVIDIA RTX 2000 Ada Generation Full details
- NVIDIA RTX A4000 Full details
- AMD Radeon RX 6800S Full details
- AMD Radeon RX 6850M XT Full details
- AMD Radeon RX 6700S Full details
- AMD Radeon RX 6650M Full details
- NVIDIA GeForce RTX 2080 Full details
- NVIDIA GeForce RTX 4050 Full details
- NVIDIA Quadro RTX 5000 Full details
- AMD Radeon RX 7600S Full details
- AMD Radeon RX 6700M Full details
- NVIDIA RTX A3000 Full details
- NVIDIA Quadro RTX 5000 (Max-Q Design) Full details
- AMD Radeon RX 6600M Full details
- NVIDIA GeForce RTX 2070 Super (Max-Q Design) Full details
- NVIDIA RTX 1000 Ada Generation Full details
- NVIDIA GeForce RTX 2080 Super (Max-Q Design) Full details
- NVIDIA GeForce RTX 3060 Full details
- AMD Radeon RX 6800M Full details
- NVIDIA GeForce RTX 2080 (Max-Q Design) Full details
- NVIDIA Quadro RTX 4000 (Max-Q Design) Full details
- NVIDIA Quadro RTX 4000 Full details
- NVIDIA GeForce RTX 2070 Full details
- NVIDIA Quadro P5200 Full details
- NVIDIA GeForce RTX 2070 (Max-Q Design) Full details
- Intel Arc A770M Full details
- NVIDIA GeForce RTX 2060 Full details
- NVIDIA GeForce GTX 1080 (Max-Q Design) Full details
- AMD Radeon RX 7600M XT Full details
- NVIDIA Quadro RTX 3000 Full details
- NVIDIA GeForce GTX 1070 Full details
- NVIDIA RTX A2000 Full details
- NVIDIA GeForce RTX 3050 Ti Full details
- NVIDIA GeForce GTX 1660 Ti Full details
- NVIDIA GeForce GTX 1070 (Max-Q Design) Full details
- NVIDIA RTX A1000 Full details
Impact of Changing Screen Resolution
Increasing the screen resolution in this case will demand more from your graphics card and can make the processor's bottleneck less noticeable in some scenarios, but again, it won't entirely solve the underlying problem.
Read moreBottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.