Graphic Card Intense Tasks bottleneck calculator
Intel Celeron N4020 and NVIDIA GeForce MX230
Graphic Card Intense Tasks
2048 × 1152
1 monitor
1. Select purpose
Currently selected:
Graphic Card Intense Tasks
2. Select processor
Currently selected:
Intel Celeron N4020
3. Select graphic card
Currently selected:
NVIDIA GeForce MX230
4. Select resolution
Currently selected:
2048 × 1152 resolution
(1 monitor)
Calculation result
Bottleneck percentage
In a system configuration featuring the Intel Celeron N4020 and NVIDIA GeForce MX230, the NVIDIA GeForce MX230 could potentially act as a bottleneck to the Intel Celeron N4020 performance in the Graphic Card Intense Tasks with 2048 × 1152 and 1 monitor. While the Intel Celeron N4020 is well-equipped to manage strenuous computational tasks, the NVIDIA GeForce MX230 limited graphical prowess may compromise the overall system efficiency. This disparity could lead to decreased performance and less effective utilization of system resources. To rectify this imbalance, an upgrade to a more capable graphics card that complements the Intel Celeron N4020 processing abilities is advisable.
With a screen resolution of 2048 × 1152 and 1 monitor, this configuration demonstrates a 20.6% graphics card bottleneck when performing Graphic Card Intense Tasks.
Processor and graphic card utilizations
In a computing setup featuring the Intel Celeron N4020 and NVIDIA GeForce MX230, under the context of Graphic Card Intense Tasks with a screen resolution of 2048 × 1152 and 1 monitor, the processor is expected to have an utilization rate of 59.6%, while the graphics card is projected to be utilized at 83%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
During gameplay scenarios, your Intel Celeron N4020 might not operate at its full potential due to the constraints imposed by the NVIDIA GeForce MX230. In such cases, the NVIDIA GeForce MX230 may struggle to swiftly process and relay data, resulting in underutilization of the Intel Celeron N4020. Therefore, the NVIDIA GeForce MX230 will be operating at its maximum capacity, leaving the Intel Celeron N4020 capabilities untapped.
In the hierarchy of bottlenecks, a graphics card bottleneck is often considered less severe than a processor bottleneck. When a graphics card bottleneck occurs, the NVIDIA GeForce MX230 operates at its uppermost limits, thereby allowing you to extract the best performance possible from the card. This ensures that you benefit from the full scope of the NVIDIA GeForce MX230 features.
One distinct advantage of not maxing out the Intel Celeron N4020 is the enhanced ability to efficiently manage other background tasks. As the Intel Celeron N4020 is not operating at full capacity while gaming, it can allocate computational resources to other ongoing activities like background processes or multitasking, without any performance trade-offs. This contributes to a smoother and more flexible overall system operation.
To gain a deeper understanding of these potential bottlenecks, consider referring to our heatmap. On the heatmap, the X-axis depicts the CPU Score, and the Y-axis signifies the GPU Score. This visualization can help identify the relationship between various CPUs and GPUs, giving you valuable insights into how to better balance your system.
By matching your Intel Celeron N4020 CPU Score with the NVIDIA GeForce MX230 GPU Score on the heatmap, you can more accurately assess how these components interact and pinpoint where bottlenecks may occur. Utilizing this heatmap analysis can guide you in making informed hardware decisions that lead to a more balanced and effective computing setup tailored to your specific needs.
Bottleneck solutions
Replace processor
If your graphic card is causing the bottleneck but you're considering replacing your processor, reconsider this approach. Unless your processor is already on the verge of becoming outdated, upgrading it might not offer a significant performance boost, particularly in graphics-heavy tasks.
- Intel Core2 Duo P9300 Full details
- Intel Core i3-2365M Full details
- Intel Core2 Duo T7600 Full details
- Intel Core2 Duo T7500 Full details
- AMD Turion X2 Ultra Mobile ZM-85 Full details
- Intel Pentium T4500 Full details
- Intel Celeron P4600 Full details
- Intel Core i3-2377M Full details
- Intel Pentium P6300 Full details
- Intel Celeron 1007U Full details
- Intel Core i3-2367M Full details
- AMD Turion II Mobile M520 Full details
- Intel Core2 Duo P7570 Full details
- Intel Pentium B940 Full details
- Intel Celeron P4500 Full details
- Intel Core2 Duo P8600 Full details
- Intel Pentium 3560Y Full details
- AMD A4-9120e Full details
- Intel Core2 Duo P8400 Full details
- AMD Turion II Neo N54L Full details
- AMD Turion II N530 Full details
- Intel Core2 Duo SP9400 Full details
- Intel Celeron B830 Full details
- Intel Celeron 2957U Full details
- AMD Turion 64 X2 Mobile TL-68 Full details
- Intel Celeron 2955U Full details
- AMD Turion II P560 Full details
- Intel Pentium N3510 Full details
- Intel Core2 Duo P7550 Full details
- Intel Pentium P6100 Full details
- Intel Celeron 1017U Full details
- Intel Atom x5-Z8350 Full details
- Intel Core2 Duo T8300 Full details
- Intel Core i3-2375M Full details
- AMD E2-9000e Full details
- Intel Core i5-520UM Full details
- Intel Pentium P6200 Full details
- Intel Atom x5-E3930 Full details
- Intel Core2 Duo T7800 Full details
- AMD Phenom II P650 Full details
- Intel Atom x5-E8000 Full details
- Intel Core2 Duo T7700 Full details
- Intel Core2 Duo P8800 Full details
- Intel Celeron 3205U Full details
- Intel Celeron N2920 Full details
- AMD Turion X2 Mobile RM-75 Full details
- Intel Core2 Duo T7250 Full details
- AMD A4-3300M Full details
- Intel Pentium T4200 Full details
- Intel Core2 Duo T6400 Full details
Impact of Changing Screen Resolution
Increasing the resolution in this scenario will only make the bottleneck worse, as the GPU will be under even more stress, leading to lower frame rates and reduced graphical quality. It won't significantly ease the load on the already underutilized processor.
Read moreReplace graphic cards
When the graphic card becomes a system bottleneck, upgrading it can provide a significant boost in performance. Opt for a card that better matches the capabilities of your processor to get a more balanced system. This will also enable you to run games and applications at higher settings, offering a vastly improved user experience.
- AMD Radeon R9 M395 Full details
- NVIDIA GeForce MX550 Full details
- NVIDIA Quadro M2200 Full details
- AMD Radeon RX 5300M Full details
- NVIDIA GeForce GTX 1050 Full details
- NVIDIA GeForce GTX 1050 (Max-Q Design) Full details
- NVIDIA GeForce GTX 680MX Full details
- NVIDIA GeForce MX450 Full details
- NVIDIA GeForce GTX 965M Full details
- NVIDIA GeForce GTX 880M Full details
- NVIDIA GeForce GTX 780M Full details
- AMD Radeon HD 8970M Full details
- AMD Radeon 740M Full details
- AMD Radeon HD 7970M Full details
- NVIDIA GeForce GTX 775M Full details
- AMD Radeon R9 M390X Full details
- AMD Radeon HD8970M Full details
- NVIDIA GeForce GTX 960M Full details
- NVIDIA GeForce GTX 870M Full details
- NVIDIA Quadro M2000M Full details
- NVIDIA GeForce GTX 860M Full details
- NVIDIA GeForce GTX 960A Full details
- NVIDIA GeForce GTX 680M Full details
- NVIDIA Quadro M1200 Full details
- AMD Radeon R9 M470X Full details
- NVIDIA Quadro M1000M Full details
- NVIDIA GeForce GTX 675MX Full details
- AMD Radeon R9 M380 Full details
- NVIDIA Quadro M620 Full details
- NVIDIA GeForce GTX 770M Full details
- NVIDIA GeForce MX350 Full details
- NVIDIA GeForce MX330 Full details
- NVIDIA GeForce GTX 950M Full details
- AMD Radeon Pro WX 4150 Full details
- NVIDIA GeForce GTX 950A Full details
- NVIDIA GeForce GTX 850M Full details
- AMD Radeon Pro WX 3200 Full details
- NVIDIA GeForce MX250 Full details
- NVIDIA GeForce GTX 485M Full details
- NVIDIA GeForce MX150 Full details
- AMD Radeon R9 M290X Full details
- NVIDIA Quadro M600M Full details
- NVIDIA GeForce 945M Full details
- NVIDIA GeForce GTX 580M Full details
- NVIDIA GeForce GTX 765M Full details
- AMD Radeon Pro WX 4130 Full details
- NVIDIA GeForce GTX 670MX Full details
- NVIDIA GeForce GTX 675M Full details
- NVIDIA Quadro M520 Full details
- NVIDIA GeForce GTX 570M Full details
Impact of Changing Screen Resolution
If your graphics card is bottlenecking the system, lowering the screen resolution will allow the card to handle data more efficiently, resulting in higher frames per second. However, it's worth noting that lower resolutions will require less data processing from the CPU, which could create a new bottleneck there.
Read moreBottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.