Graphic Card Intense Tasks bottleneck calculator
AMD Athlon 300U and NVIDIA RTX A5500
Graphic Card Intense Tasks
7680 × 4320
1 monitor
1. Select purpose
Currently selected:
Graphic Card Intense Tasks
2. Select processor
Currently selected:
AMD Athlon 300U
3. Select graphic card
Currently selected:
NVIDIA RTX A5500
4. Select resolution
Currently selected:
7680 × 4320 resolution
(1 monitor)
Calculation result
Bottleneck percentage
The AMD Athlon 300U may serve as a bottleneck for the NVIDIA RTX A5500 in the Graphic Card Intense Tasks with 7680 × 4320 and 1 monitor. Although the NVIDIA RTX A5500 is engineered to manage heavy graphical tasks, the AMD Athlon 300U might lack the processing power needed to fully unlock the NVIDIA RTX A5500 capabilities. This imbalance may inhibit the overall efficiency of your system, slowing down processing and possibly compromising graphical fidelity. For a more harmonious hardware setup, upgrading to a high-performing processor that can meet the demands of current software and games is advised.
In a configuration featuring the AMD Athlon 300U and NVIDIA RTX A5500, with a screen resolution of 7680 × 4320 and 1 monitor, the system experiences a 10.4% bottleneck for Graphic Card Intense Tasks.
Processor and graphic card utilizations
In a computing setup featuring the AMD Athlon 300U and NVIDIA RTX A5500, under the context of Graphic Card Intense Tasks with a screen resolution of 7680 × 4320 and 1 monitor, the processor is expected to have an utilization rate of 83.2%, while the graphics card is projected to be utilized at 67.4%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
In gaming scenarios, your NVIDIA RTX A5500 might not attain its full performance potential due to a lack of optimal utilization. This happens when the AMD Athlon 300U fails to handle and transmit data to the NVIDIA RTX A5500 at an adequate speed. As a result, the AMD Athlon 300U will be operating at its maximum capacity, while the NVIDIA RTX A5500 remains underutilized.
When it comes to bottlenecks, a processor bottleneck is generally viewed as more detrimental than a graphics card bottleneck. In cases of a processor bottleneck, the AMD Athlon 300U capacity reaches its limits, which may adversely affect other applications running concurrently. This situation can result in diminished responsiveness and multi-tasking capabilities.
Moreover, due to the processor bottleneck, the system might not leverage the full performance capabilities of the NVIDIA RTX A5500. Consequently, there could be restrictions in graphical rendering, frame rates, and the overall gaming experience.
To visualize these bottlenecks, consider examining our heatmap. On this heatmap, the X-axis represents the CPU Score, while the Y-axis denotes the GPU Score. A quick glance at this heatmap can offer invaluable insights into potential bottlenecks within various system configurations.
By correlating your AMD Athlon 300U CPU Score and NVIDIA RTX A5500 GPU Score on the heatmap, you can acquire a more comprehensive understanding of how these components interact and where the bottlenecks might occur. Making well-informed hardware choices based on this heatmap analysis can lead to a more balanced and efficient computing setup for your specific needs.
Bottleneck solutions
Replace processor
When the processor becomes the system's bottleneck, upgrading it is often the most straightforward way to improve performance. Opting for a faster processor with more cores and higher clock speeds can effectively minimize or even eliminate the bottleneck, making it easier for your graphics card to perform to its maximum capability.
- Intel Core i5-10400H Full details
- Intel Core i7-10810U Full details
- Intel Core i7-1180G7 Full details
- Intel Core i7-1065G7 Full details
- Intel Core i7-8559U Full details
- Intel Core i7-8809G Full details
- Intel Core i5-1130G7 Full details
- Intel Core i5-9300H Full details
- Intel Core i5-8260U Full details
- AMD Ryzen 5 3550U Full details
- Intel Core i7-8705G Full details
- Intel Core i5-8400H Full details
- Intel Core i7-5950HQ Full details
- AMD Ryzen 5 3550H Full details
- Intel Core i5-8259U Full details
- Intel Core i5-1035G4 Full details
- Intel Core i5-9400H Full details
- Intel Core i7-8709G Full details
- Intel Core i7-8706G Full details
- Intel Core i5-10200H Full details
- AMD Ryzen 7 3750H Full details
- Intel Core i5-1035G7 Full details
- Intel Core i7-8569U Full details
- Intel Core i5-8305G Full details
- AMD Ryzen 5 3500U Full details
- AMD Ryzen 7 3780U Full details
- Intel Core i7-6820EQ Full details
- Intel Core i7-4940MX Full details
- AMD Ryzen 5 PRO 3500U Full details
- Intel Core i7-6820HK Full details
- Intel Core i7-6770HQ Full details
- AMD Ryzen 7 PRO 2700U Full details
- AMD Ryzen 7 3700U Full details
- Intel Core i7-7820HQ Full details
- AMD Ryzen 5 3580U Full details
- Intel Core i7-6920HQ Full details
- Intel Core i3-10100T Full details
- Intel Core i5-9300HF Full details
- Intel Core i7-7920HQ Full details
- Intel Core i7-7820HK Full details
- Intel Core i5-1035G1 Full details
- AMD Ryzen 3 4300U Full details
- Intel Core i5-8279U Full details
- AMD Ryzen 7 PRO 3700U Full details
- Intel Core i5-8300H Full details
- Intel Core i5-8257U Full details
- Intel Core i7-8557U Full details
- Intel Core i5-10310U Full details
- Intel Core i7-4930MX Full details
- Intel Core i7-4960HQ Full details
Impact of Changing Screen Resolution
Interestingly, if you're facing a processor bottleneck, altering the screen resolution may have a counterintuitive impact. Elevating the screen resolution will primarily stress the graphics card, thereby reducing the proportion of work that the processor needs to do in certain tasks. This makes it less likely that the processor will max out, though it does not replace the benefits of a processor upgrade for a balanced system.
Read moreReplace graphic cards
If the processor is causing the bottleneck, replacing the graphic card isn't generally recommended unless you're also planning to upgrade the processor. Downgrading your graphics card to better match the processor might alleviate the bottleneck, but it often results in a decrease in overall system performance, especially in graphics-heavy tasks like gaming or 3D rendering.
- NVIDIA GeForce RTX 3070 Ti Full details
- NVIDIA GeForce RTX 4060 Full details
- NVIDIA RTX A4500 Full details
- NVIDIA GeForce RTX 3080 Full details
- NVIDIA RTX 3000 Ada Generation Full details
- NVIDIA RTX A5000 Full details
- NVIDIA GeForce RTX 3070 Full details
- NVIDIA RTX 2000 Ada Generation Full details
- NVIDIA RTX A4000 Full details
- AMD Radeon RX 6800S Full details
- AMD Radeon RX 6850M XT Full details
- AMD Radeon RX 6700S Full details
- AMD Radeon RX 6650M Full details
- NVIDIA GeForce RTX 2080 Full details
- NVIDIA GeForce RTX 4050 Full details
- NVIDIA Quadro RTX 5000 Full details
- AMD Radeon RX 7600S Full details
- AMD Radeon RX 6700M Full details
- NVIDIA RTX A3000 Full details
- NVIDIA Quadro RTX 5000 (Max-Q Design) Full details
- AMD Radeon RX 6600M Full details
- NVIDIA GeForce RTX 2070 Super (Max-Q Design) Full details
- NVIDIA RTX 1000 Ada Generation Full details
- NVIDIA GeForce RTX 2080 Super (Max-Q Design) Full details
- NVIDIA GeForce RTX 3060 Full details
- NVIDIA GeForce RTX 2080 (Max-Q Design) Full details
- AMD Radeon RX 6800M Full details
- NVIDIA Quadro RTX 4000 (Max-Q Design) Full details
- NVIDIA Quadro P5200 Full details
- NVIDIA GeForce RTX 2070 Full details
- NVIDIA Quadro RTX 4000 Full details
- Intel Arc A770M Full details
- NVIDIA GeForce RTX 2070 (Max-Q Design) Full details
- NVIDIA GeForce RTX 2060 Full details
- AMD Radeon RX 7600M XT Full details
- NVIDIA GeForce GTX 1080 (Max-Q Design) Full details
- NVIDIA Quadro RTX 3000 Full details
- NVIDIA RTX A2000 Full details
- NVIDIA GeForce GTX 1070 Full details
- NVIDIA GeForce RTX 3050 Ti Full details
- NVIDIA GeForce GTX 1660 Ti Full details
- NVIDIA GeForce GTX 1070 (Max-Q Design) Full details
- NVIDIA RTX A1000 Full details
- NVIDIA GeForce RTX 2060 (Max-Q Design) Full details
- AMD Radeon RX 6550M Full details
- AMD Radeon Pro 5600M Full details
- AMD Radeon RX 5600M Full details
- NVIDIA GeForce GTX 1660 Ti (Max-Q Design) Full details
- NVIDIA GeForce RTX 3050 Full details
- NVIDIA Quadro RTX 3000 (Max-Q Design) Full details
Impact of Changing Screen Resolution
Increasing the screen resolution in this case will demand more from your graphics card and can make the processor's bottleneck less noticeable in some scenarios, but again, it won't entirely solve the underlying problem.
Read moreBottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.