Graphic Card Intense Tasks bottleneck calculator
Intel Core i7-8500Y and NVIDIA GeForce GTX 680MX
Graphic Card Intense Tasks
2048 × 1152
1 monitor
1. Select purpose
Currently selected:
Graphic Card Intense Tasks
2. Select processor
Currently selected:
Intel Core i7-8500Y
3. Select graphic card
Currently selected:
NVIDIA GeForce GTX 680MX
4. Select resolution
Currently selected:
2048 × 1152 resolution
(1 monitor)
Calculation result
Bottleneck percentage
When configuring a high-performance computing setup, it's imperative to ensure that each hardware component is well-matched with its counterparts to provide seamless and optimal system performance. In the case of the Intel Core i7-8500Y and NVIDIA GeForce GTX 680MX in the Graphic Card Intense Tasks with 2048 × 1152 and 1 monitor, it appears that hardware compatibility has been achieved superbly, as evidenced by the calculated bottleneck percentage of 0%.
To elaborate, a bottleneck occurs when one component restricts the maximum efficiency of another, leading to suboptimal performance and reduced system effectiveness. However, in this configuration, that is not a concern. Any bottleneck percentage below 5% is generally deemed insignificant, and our current bottleneck value sits at 0%, which means you can expect superior system performance.
Processor and graphic card utilizations
In a computing setup featuring the Intel Core i7-8500Y and NVIDIA GeForce GTX 680MX, under the context of Graphic Card Intense Tasks with a screen resolution of 2048 × 1152 and 1 monitor, the processor is expected to have an utilization rate of 82.9%, while the graphics card is projected to be utilized at 83.1%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
The heatmap serves as a graphical representation to further confirm the compatibility between the Intel Core i7-8500Y and NVIDIA GeForce GTX 680MX. On this heatmap, the x-axis corresponds to the CPU Score, and the y-axis corresponds to the GPU Score. In a perfectly balanced system such as this, the intersection point of the Intel Core i7-8500Y and NVIDIA GeForce GTX 680MX will fall within the "no bottleneck zone."
The "no bottleneck zone" is an area on the heatmap where the hardware components are not only compatible but are also optimally matched to provide peak system performance. When the intersection of the CPU and GPU scores resides in this zone, it is a strong indicator that the system is balanced and will deliver excellent performance for Graphic Card Intense Tasks. The presence of both the Intel Core i7-8500Y and NVIDIA GeForce GTX 680MX in this zone confirms that neither component will hinder the performance of the other, leading to a seamless and highly efficient computing experience.
Mapping your Intel Core i7-8500Y CPU Score against the NVIDIA GeForce GTX 680MX GPU Score can provide a comprehensive view of how these components interact and where bottlenecks are most likely to happen. Leveraging this heatmap data could guide you in making more balanced hardware selections suitable for your specific computing needs.
Bottleneck solutions
Replace processor
If your graphic card is causing the bottleneck but you're considering replacing your processor, reconsider this approach. Unless your processor is already on the verge of becoming outdated, upgrading it might not offer a significant performance boost, particularly in graphics-heavy tasks.
- Intel Core i5-3380M Full details
- AMD A10-9630P Full details
- Intel Core i5-4308U Full details
- AMD Athlon Silver 3050e Full details
- AMD A12-9730P Full details
- Intel Core i5-4300M Full details
- Intel Core i7-3540M Full details
- AMD Athlon Silver 3050U Full details
- Intel Core i5-6200U Full details
- Intel Core i7-5650U Full details
- Intel Core i7-4558U Full details
- Intel Core i3-7130U Full details
- Intel Core i7-5600U Full details
- Intel Core i3-6100H Full details
- Intel Core i5-4210H Full details
- Intel Core i5-5287U Full details
- Intel Core i7-5557U Full details
- Intel Core i7-4578U Full details
- Intel Core i5-6360U Full details
- Intel Core i5-4310M Full details
- Intel Pentium Silver N5000 Full details
- Intel Core i5-4258U Full details
- Intel Core i5-4288U Full details
- Intel Core i3-6100U Full details
- Intel Core i7-3687U Full details
- Intel Core i5-7Y54 Full details
- AMD A12-9720P Full details
- Intel Core i5-3610ME Full details
- Intel Core i5-3320M Full details
- AMD PRO A12-9800B Full details
- Intel Core i5-3340M Full details
- Intel Core i7-4600U Full details
- AMD 3015e Full details
- Intel Core i3-7100U Full details
- Intel Core m3-7Y32 Full details
- Intel Core i5-5300U Full details
- AMD FX-7600P Full details
- Intel Core i3-6157U Full details
- Intel Core i5-8210Y Full details
- Intel Core i7-5500U Full details
- AMD RX-427BB Full details
- Intel Core i5-5257U Full details
- Intel Core i5-4200M Full details
- Intel Core i5-4278U Full details
- AMD FX-8800P Full details
- Intel Core i7-5550U Full details
- Intel Core i5-3360M Full details
- Intel Core m3-8100Y Full details
- Intel Core i7-3520M Full details
- Intel Core i5-4210M Full details
Impact of Changing Screen Resolution
Increasing the resolution in this scenario will only make the bottleneck worse, as the GPU will be under even more stress, leading to lower frame rates and reduced graphical quality. It won't significantly ease the load on the already underutilized processor.
Read moreReplace graphic cards
When the graphic card becomes a system bottleneck, upgrading it can provide a significant boost in performance. Opt for a card that better matches the capabilities of your processor to get a more balanced system. This will also enable you to run games and applications at higher settings, offering a vastly improved user experience.
- AMD Radeon Pro 5500M Full details
- NVIDIA Quadro T1000 Full details
- NVIDIA Quadro P3000 Full details
- NVIDIA Quadro T1000 (Max-Q Design) Full details
- NVIDIA RTX A500 Full details
- NVIDIA Quadro M4000M Full details
- NVIDIA GeForce GTX 1650 Ti (Max-Q Design) Full details
- NVIDIA GeForce GTX 1050 Ti Full details
- AMD Radeon 760M Full details
- NVIDIA GeForce MX570 A Full details
- AMD Radeon Pro 5300M Full details
- NVIDIA GeForce GTX 1650 (Max-Q Design) Full details
- NVIDIA GeForce GTX 970M Full details
- NVIDIA GeForce MX570 Full details
- NVIDIA GeForce GTX 1050 Ti (Max-Q Design) Full details
- AMD Radeon RX 5500M Full details
- NVIDIA Quadro M3000M Full details
- AMD Radeon R9 M295X Full details
- AMD Radeon R9 M395X Full details
- AMD Radeon R9 M395 Full details
- NVIDIA GeForce MX550 Full details
- NVIDIA Quadro M2200 Full details
- AMD Radeon RX 5300M Full details
- NVIDIA GeForce GTX 1050 Full details
- NVIDIA GeForce GTX 1050 (Max-Q Design) Full details
- NVIDIA GeForce MX450 Full details
- NVIDIA GeForce GTX 965M Full details
- NVIDIA GeForce GTX 880M Full details
- NVIDIA GeForce GTX 780M Full details
- AMD Radeon HD 8970M Full details
- NVIDIA GeForce GTX 775M Full details
- AMD Radeon R9 M390X Full details
- AMD Radeon HD 7970M Full details
- AMD Radeon 740M Full details
- NVIDIA GeForce GTX 870M Full details
- NVIDIA Quadro M2000M Full details
- NVIDIA GeForce GTX 960M Full details
- AMD Radeon HD8970M Full details
- AMD Radeon R9 M470X Full details
- NVIDIA Quadro M1200 Full details
- NVIDIA GeForce GTX 680M Full details
- NVIDIA GeForce GTX 960A Full details
- NVIDIA GeForce GTX 860M Full details
- NVIDIA Quadro M1000M Full details
- NVIDIA GeForce GTX 770M Full details
- NVIDIA GeForce MX350 Full details
- NVIDIA Quadro M620 Full details
- AMD Radeon R9 M380 Full details
- NVIDIA GeForce GTX 675MX Full details
- AMD Radeon Pro WX 4150 Full details
Impact of Changing Screen Resolution
If your graphics card is bottlenecking the system, lowering the screen resolution will allow the card to handle data more efficiently, resulting in higher frames per second. However, it's worth noting that lower resolutions will require less data processing from the CPU, which could create a new bottleneck there.
Read moreBottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.