Graphic Card Intense Tasks bottleneck calculator
AMD Turion RM-70 and NVIDIA GeForce MX250
Graphic Card Intense Tasks
2560 × 1600
1 monitor
1. Select purpose
Currently selected:
Graphic Card Intense Tasks
2. Select processor
Currently selected:
AMD Turion RM-70
3. Select graphic card
Currently selected:
NVIDIA GeForce MX250
4. Select resolution
Currently selected:
2560 × 1600 resolution
(1 monitor)
Calculation result
Bottleneck percentage
The AMD Turion RM-70 may serve as a bottleneck for the NVIDIA GeForce MX250 in the Graphic Card Intense Tasks with 2560 × 1600 and 1 monitor. Although the NVIDIA GeForce MX250 is engineered to manage heavy graphical tasks, the AMD Turion RM-70 might lack the processing power needed to fully unlock the NVIDIA GeForce MX250 capabilities. This imbalance may inhibit the overall efficiency of your system, slowing down processing and possibly compromising graphical fidelity. For a more harmonious hardware setup, upgrading to a high-performing processor that can meet the demands of current software and games is advised.
In a configuration featuring the AMD Turion RM-70 and NVIDIA GeForce MX250, with a screen resolution of 2560 × 1600 and 1 monitor, the system experiences a 6.3% bottleneck for Graphic Card Intense Tasks.
Processor and graphic card utilizations
In a computing setup featuring the AMD Turion RM-70 and NVIDIA GeForce MX250, under the context of Graphic Card Intense Tasks with a screen resolution of 2560 × 1600 and 1 monitor, the processor is expected to have an utilization rate of 82.4%, while the graphics card is projected to be utilized at 70.4%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
In gaming scenarios, your NVIDIA GeForce MX250 might not attain its full performance potential due to a lack of optimal utilization. This happens when the AMD Turion RM-70 fails to handle and transmit data to the NVIDIA GeForce MX250 at an adequate speed. As a result, the AMD Turion RM-70 will be operating at its maximum capacity, while the NVIDIA GeForce MX250 remains underutilized.
When it comes to bottlenecks, a processor bottleneck is generally viewed as more detrimental than a graphics card bottleneck. In cases of a processor bottleneck, the AMD Turion RM-70 capacity reaches its limits, which may adversely affect other applications running concurrently. This situation can result in diminished responsiveness and multi-tasking capabilities.
Moreover, due to the processor bottleneck, the system might not leverage the full performance capabilities of the NVIDIA GeForce MX250. Consequently, there could be restrictions in graphical rendering, frame rates, and the overall gaming experience.
To visualize these bottlenecks, consider examining our heatmap. On this heatmap, the X-axis represents the CPU Score, while the Y-axis denotes the GPU Score. A quick glance at this heatmap can offer invaluable insights into potential bottlenecks within various system configurations.
By correlating your AMD Turion RM-70 CPU Score and NVIDIA GeForce MX250 GPU Score on the heatmap, you can acquire a more comprehensive understanding of how these components interact and where the bottlenecks might occur. Making well-informed hardware choices based on this heatmap analysis can lead to a more balanced and efficient computing setup for your specific needs.
Bottleneck solutions
Replace processor
When the processor becomes the system's bottleneck, upgrading it is often the most straightforward way to improve performance. Opting for a faster processor with more cores and higher clock speeds can effectively minimize or even eliminate the bottleneck, making it easier for your graphics card to perform to its maximum capability.
- Intel Core2 Extreme X9000 Full details
- AMD A9-9420e Full details
- Intel Celeron 1005M Full details
- Intel Core2 Duo E8435 Full details
- Intel Core2 Extreme X7900 Full details
- Intel Celeron N3350 Full details
- Intel Core2 Duo E8135 Full details
- AMD A6-9200 Full details
- Intel Celeron 3215U Full details
- AMD E2-6110 Full details
- Intel Core i3-2312M Full details
- AMD PRO A4-4350B Full details
- Intel Core2 Duo P9300 Full details
- AMD Turion II Ultra Mobile M600 Full details
- Intel Core2 Duo P8700 Full details
- AMD Phenom II N640 Full details
- Intel Pentium B960 Full details
- AMD A6-9220e Full details
- Intel Core2 Duo T9550 Full details
- AMD E2-9000 Full details
- Intel Core2 Duo T9300 Full details
- Intel Core2 Duo P9500 Full details
- Intel Pentium B950 Full details
- Intel Celeron 1037U Full details
- AMD A4-4300M Full details
- AMD Turion II P540 Full details
- Intel Core i5-540UM Full details
- Intel Core2 Duo E8335 Full details
- AMD Phenom II P920 Full details
- Intel Core2 Duo T9400 Full details
- AMD A6 PRO-7050B Full details
- AMD A6-4400M Full details
- Intel Core i7-620UM Full details
- AMD A6-7000 Full details
- AMD Phenom II N620 Full details
- Intel Celeron B840 Full details
- Intel Celeron N2930 Full details
- Intel Core i3-330M Full details
- Intel Core2 Duo E8235 Full details
- Intel Pentium 2117U Full details
- Intel Celeron 2981U Full details
- Intel Pentium 3558U Full details
- AMD Turion II Ultra Mobile M640 Full details
- Intel Celeron N2940 Full details
- Intel Core2 Duo P9600 Full details
- AMD A6-1450 Full details
- Intel Core2 Duo T9500 Full details
- AMD A6-9220C Full details
- Intel Core2 Duo E8335 Full details
- Intel Pentium 3556U Full details
Impact of Changing Screen Resolution
Interestingly, if you're facing a processor bottleneck, altering the screen resolution may have a counterintuitive impact. Elevating the screen resolution will primarily stress the graphics card, thereby reducing the proportion of work that the processor needs to do in certain tasks. This makes it less likely that the processor will max out, though it does not replace the benefits of a processor upgrade for a balanced system.
Read moreReplace graphic cards
If the processor is causing the bottleneck, replacing the graphic card isn't generally recommended unless you're also planning to upgrade the processor. Downgrading your graphics card to better match the processor might alleviate the bottleneck, but it often results in a decrease in overall system performance, especially in graphics-heavy tasks like gaming or 3D rendering.
- NVIDIA GeForce GTX 675MX Full details
- AMD Radeon R9 M380 Full details
- NVIDIA Quadro M620 Full details
- NVIDIA GeForce GTX 770M Full details
- NVIDIA GeForce MX350 Full details
- NVIDIA GeForce MX330 Full details
- AMD Radeon Pro WX 3200 Full details
- NVIDIA GeForce GTX 850M Full details
- NVIDIA GeForce GTX 950A Full details
- NVIDIA GeForce GTX 950M Full details
- AMD Radeon Pro WX 4150 Full details
- AMD Radeon R9 M290X Full details
- NVIDIA GeForce MX150 Full details
- NVIDIA GeForce GTX 485M Full details
- NVIDIA GeForce GTX 580M Full details
- NVIDIA GeForce 945M Full details
- NVIDIA Quadro M600M Full details
- NVIDIA Quadro M520 Full details
- NVIDIA GeForce GTX 675M Full details
- NVIDIA GeForce GTX 670MX Full details
- AMD Radeon Pro WX 4130 Full details
- NVIDIA GeForce GTX 765M Full details
- NVIDIA GeForce GTX 760M Full details
- AMD Radeon R9 M375X Full details
- NVIDIA GeForce GTX 670M Full details
- AMD Firepro W5170M Full details
- AMD Radeon Pro WX 2100 Full details
- NVIDIA GeForce MX230 Full details
- NVIDIA GeForce MX130 Full details
- NVIDIA GeForce GTX 570M Full details
- NVIDIA GeForce GT 755M Full details
- AMD Radeon HD 6900M Full details
- AMD Radeon HD 8870M Full details
- NVIDIA GeForce GTX 480M Full details
- Intel Iris Plus 650 Full details
- AMD Radeon R9 M275X Full details
- AMD Radeon R9 M370X Full details
- NVIDIA GeForce 845M Full details
- NVIDIA GeForce 940MX Full details
- AMD Radeon HD 7870M Full details
- AMD Radeon Vega 10 Mobile Full details
- NVIDIA GeForce MX110 Full details
- NVIDIA GeForce GTX 660M Full details
- AMD Radeon Vega 8 Mobile Full details
- AMD Radeon R7 M370 Full details
- Intel Iris Plus 640 Full details
- NVIDIA GeForce GT 750M Full details
- AMD FirePro M6000 Mobility Pro Full details
- AMD FirePro M4000 Mobility Pro Full details
- AMD FirePro M40003 Full details
Impact of Changing Screen Resolution
Increasing the screen resolution in this case will demand more from your graphics card and can make the processor's bottleneck less noticeable in some scenarios, but again, it won't entirely solve the underlying problem.
Read moreBottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.