Graphic Card Intense Tasks bottleneck calculator
AMD Sempron 2800+ and NVIDIA GeForce GTX 570
Graphic Card Intense Tasks
1920 × 1080
1 monitor
1. Select purpose
Currently selected:
Graphic Card Intense Tasks
2. Select processor
Currently selected:
AMD Sempron 2800+
3. Select graphic card
Currently selected:
NVIDIA GeForce GTX 570
4. Select resolution
Currently selected:
1920 × 1080 resolution
(1 monitor)
Calculation result
Bottleneck percentage
The AMD Sempron 2800+ may serve as a bottleneck for the NVIDIA GeForce GTX 570 in the Graphic Card Intense Tasks with 1920 × 1080 and 1 monitor. Although the NVIDIA GeForce GTX 570 is engineered to manage heavy graphical tasks, the AMD Sempron 2800+ might lack the processing power needed to fully unlock the NVIDIA GeForce GTX 570 capabilities. This imbalance may inhibit the overall efficiency of your system, slowing down processing and possibly compromising graphical fidelity. For a more harmonious hardware setup, upgrading to a high-performing processor that can meet the demands of current software and games is advised.
In a configuration featuring the AMD Sempron 2800+ and NVIDIA GeForce GTX 570, with a screen resolution of 1920 × 1080 and 1 monitor, the system experiences a 51.8% bottleneck for Graphic Card Intense Tasks.
Processor and graphic card utilizations
In a computing setup featuring the AMD Sempron 2800+ and NVIDIA GeForce GTX 570, under the context of Graphic Card Intense Tasks with a screen resolution of 1920 × 1080 and 1 monitor, the processor is expected to have an utilization rate of 82%, while the graphics card is projected to be utilized at 36.3%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
In gaming scenarios, your NVIDIA GeForce GTX 570 might not attain its full performance potential due to a lack of optimal utilization. This happens when the AMD Sempron 2800+ fails to handle and transmit data to the NVIDIA GeForce GTX 570 at an adequate speed. As a result, the AMD Sempron 2800+ will be operating at its maximum capacity, while the NVIDIA GeForce GTX 570 remains underutilized.
When it comes to bottlenecks, a processor bottleneck is generally viewed as more detrimental than a graphics card bottleneck. In cases of a processor bottleneck, the AMD Sempron 2800+ capacity reaches its limits, which may adversely affect other applications running concurrently. This situation can result in diminished responsiveness and multi-tasking capabilities.
Moreover, due to the processor bottleneck, the system might not leverage the full performance capabilities of the NVIDIA GeForce GTX 570. Consequently, there could be restrictions in graphical rendering, frame rates, and the overall gaming experience.
To visualize these bottlenecks, consider examining our heatmap. On this heatmap, the X-axis represents the CPU Score, while the Y-axis denotes the GPU Score. A quick glance at this heatmap can offer invaluable insights into potential bottlenecks within various system configurations.
By correlating your AMD Sempron 2800+ CPU Score and NVIDIA GeForce GTX 570 GPU Score on the heatmap, you can acquire a more comprehensive understanding of how these components interact and where the bottlenecks might occur. Making well-informed hardware choices based on this heatmap analysis can lead to a more balanced and efficient computing setup for your specific needs.
Bottleneck solutions
Replace processor
When the processor becomes the system's bottleneck, upgrading it is often the most straightforward way to improve performance. Opting for a faster processor with more cores and higher clock speeds can effectively minimize or even eliminate the bottleneck, making it easier for your graphics card to perform to its maximum capability.
- Intel Celeron J4105 Full details
- Intel Core i3-4150T Full details
- AMD FX-770K Full details
- Intel Core i5-2500T Full details
- Intel Core i7-940 Full details
- AMD Athlon X4 760K Full details
- AMD A8 PRO-7600B Full details
- Intel Celeron J4125 Full details
- AMD A10-5800K Full details
- Intel Core i7-930 Full details
- AMD Athlon II X4 559 Full details
- AMD A8-5500 Full details
- AMD FX-4100 Full details
- AMD A8-5500B Full details
- Intel Core i5-680 Full details
- AMD Athlon X4 750 Full details
- AMD Athlon X4 740 Full details
- AMD Phenom II X4 965 Full details
- AMD Phenom II X4 B60 Full details
- Intel Core i5-760 Full details
- Intel Celeron G5900 Full details
- AMD FX-4130 Full details
- Intel Celeron J4115 Full details
- Intel Core2 Extreme X9770 Full details
- AMD Phenom II X4 B65 Full details
- Intel Pentium G4520 Full details
- AMD A10-5700 Full details
- AMD Phenom II X4 970 Full details
- Intel Pentium G4500 Full details
- Intel Celeron G5905 Full details
- AMD A8-6500 Full details
- Intel Core i7-920 Full details
- AMD Phenom II X4 980 Full details
- Intel Celeron G5925 Full details
- AMD A8-5600K Full details
- AMD A8-6500B Full details
- AMD PRO A10-8750B Full details
- Intel Xeon X5492 Full details
- Intel Xeon X5470 Full details
- Intel Xeon W3520 Full details
- Intel Xeon X3460 Full details
- Intel Xeon E5-2407 Full details
- Intel Xeon E5607 Full details
- Intel Xeon E5530 Full details
- Intel Xeon E5-2603 v2 Full details
- Intel Xeon X5482 Full details
- Intel Xeon X3440 Full details
- Intel Xeon E5540 Full details
- Intel Xeon E5-2609 Full details
- Intel Xeon X3450 Full details
Impact of Changing Screen Resolution
Interestingly, if you're facing a processor bottleneck, altering the screen resolution may have a counterintuitive impact. Elevating the screen resolution will primarily stress the graphics card, thereby reducing the proportion of work that the processor needs to do in certain tasks. This makes it less likely that the processor will max out, though it does not replace the benefits of a processor upgrade for a balanced system.
Read moreReplace graphic cards
If the processor is causing the bottleneck, replacing the graphic card isn't generally recommended unless you're also planning to upgrade the processor. Downgrading your graphics card to better match the processor might alleviate the bottleneck, but it often results in a decrease in overall system performance, especially in graphics-heavy tasks like gaming or 3D rendering.
- AMD Radeon 630 Full details
- NVIDIA GeForce GTX 280 Full details
- AMD Radeon HD 4870 X2 Full details
- AMD Radeon Vega 6 Full details
- NVIDIA GeForce GTS 450 Full details
- AMD Radeon HD 5770 Full details
- AMD Radeon HD 4870 Full details
- AMD Radeon 540 Full details
- AMD Radeon HD 4850 X2 Full details
- AMD Radeon HD 5750 Full details
- AMD Radeon R7 Opteron X3421 Full details
- NVIDIA GeForce GT 640 Full details
- AMD Radeon HD 7730 Full details
- NVIDIA GeForce GTX 295 Full details
- NVIDIA GeForce GTX 260 Full details
- AMD Radeon HD 6770 Full details
- Intel UHD Graphics 620 Full details
- AMD Radeon HD 6750 Full details
- AMD Radeon R7 A12-9730P Radeon Full details
- AMD Radeon R7 250 Full details
- AMD Radeon R7 M460 Full details
- AMD Radeon 535 Full details
- AMD Radeon R7 A12-9800 Radeon Full details
- AMD Radeon 625 Full details
- AMD Radeon R7 M350 Full details
- AMD Radeon R7 430 Full details
- AMD Radeon R7 M465 Full details
- NVIDIA GeForce GT 545 Full details
- AMD Radeon R7 A10-7870K Full details
- AMD Radeon 530 Full details
- AMD Radeon R7 340 Full details
- AMD Radeon Vega 3 Athlon 3000G Full details
- AMD Radeon R5 A10-9630P Full details
- AMD Radeon R7 PRO A10-9700E Full details
- AMD FirePro V5900 Full details
- NVIDIA Quadro 4000M Full details
- NVIDIA Quadro K2100M Full details
- AMD FirePro M4170 Full details
- AMD Firepro W4190M Full details
- AMD FirePro V5800 Full details
- AMD FirePro 3D V8700 Full details
- NVIDIA Quadro FX 5800 Full details
- AMD FirePro 3D V5800 Full details
- AMD FirePro W4170M Full details
- AMD Firepro M4100 Full details
- NVIDIA Quadro K1100M Full details
- NVIDIA Quadro K2000M Full details
- NVIDIA Quadro 3000M Full details
- AMD FirePro V4900 Full details
- NVIDIA Quadro FX 4800 Full details
Impact of Changing Screen Resolution
Increasing the screen resolution in this case will demand more from your graphics card and can make the processor's bottleneck less noticeable in some scenarios, but again, it won't entirely solve the underlying problem.
Read moreBottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.