Graphic Card Intense Tasks bottleneck calculator
AMD Athlon 64 X2 5400+ and NVIDIA Quadro RTX 4000
Graphic Card Intense Tasks
1920 × 1080
1 monitor
1. Select purpose
Currently selected:
Graphic Card Intense Tasks
2. Select processor
Currently selected:
AMD Athlon 64 X2 5400+
3. Select graphic card
Currently selected:
NVIDIA Quadro RTX 4000
4. Select resolution
Currently selected:
1920 × 1080 resolution
(1 monitor)
Calculation result
Bottleneck percentage
The AMD Athlon 64 X2 5400+ may serve as a bottleneck for the NVIDIA Quadro RTX 4000 in the Graphic Card Intense Tasks with 1920 × 1080 and 1 monitor. Although the NVIDIA Quadro RTX 4000 is engineered to manage heavy graphical tasks, the AMD Athlon 64 X2 5400+ might lack the processing power needed to fully unlock the NVIDIA Quadro RTX 4000 capabilities. This imbalance may inhibit the overall efficiency of your system, slowing down processing and possibly compromising graphical fidelity. For a more harmonious hardware setup, upgrading to a high-performing processor that can meet the demands of current software and games is advised.
In a configuration featuring the AMD Athlon 64 X2 5400+ and NVIDIA Quadro RTX 4000, with a screen resolution of 1920 × 1080 and 1 monitor, the system experiences a 69% bottleneck for Graphic Card Intense Tasks.
Processor and graphic card utilizations
In a computing setup featuring the AMD Athlon 64 X2 5400+ and NVIDIA Quadro RTX 4000, under the context of Graphic Card Intense Tasks with a screen resolution of 1920 × 1080 and 1 monitor, the processor is expected to have an utilization rate of 82.8%, while the graphics card is projected to be utilized at 23.3%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
In gaming scenarios, your NVIDIA Quadro RTX 4000 might not attain its full performance potential due to a lack of optimal utilization. This happens when the AMD Athlon 64 X2 5400+ fails to handle and transmit data to the NVIDIA Quadro RTX 4000 at an adequate speed. As a result, the AMD Athlon 64 X2 5400+ will be operating at its maximum capacity, while the NVIDIA Quadro RTX 4000 remains underutilized.
When it comes to bottlenecks, a processor bottleneck is generally viewed as more detrimental than a graphics card bottleneck. In cases of a processor bottleneck, the AMD Athlon 64 X2 5400+ capacity reaches its limits, which may adversely affect other applications running concurrently. This situation can result in diminished responsiveness and multi-tasking capabilities.
Moreover, due to the processor bottleneck, the system might not leverage the full performance capabilities of the NVIDIA Quadro RTX 4000. Consequently, there could be restrictions in graphical rendering, frame rates, and the overall gaming experience.
To visualize these bottlenecks, consider examining our heatmap. On this heatmap, the X-axis represents the CPU Score, while the Y-axis denotes the GPU Score. A quick glance at this heatmap can offer invaluable insights into potential bottlenecks within various system configurations.
By correlating your AMD Athlon 64 X2 5400+ CPU Score and NVIDIA Quadro RTX 4000 GPU Score on the heatmap, you can acquire a more comprehensive understanding of how these components interact and where the bottlenecks might occur. Making well-informed hardware choices based on this heatmap analysis can lead to a more balanced and efficient computing setup for your specific needs.
Bottleneck solutions
Replace processor
When the processor becomes the system's bottleneck, upgrading it is often the most straightforward way to improve performance. Opting for a faster processor with more cores and higher clock speeds can effectively minimize or even eliminate the bottleneck, making it easier for your graphics card to perform to its maximum capability.
- AMD Ryzen 5 7600X Full details
- AMD Ryzen 7 5800X Full details
- AMD Ryzen 7 5800X3D Full details
- Intel Core i5-12600K Full details
- Intel Xeon W-2275 Full details
- Intel Core i9-10940X Full details
- Intel Core i9-9940X Full details
- AMD Ryzen 7 5700X Full details
- AMD Ryzen 5 7600 Full details
- AMD Ryzen 5 7500F Full details
- Intel Core i5-12600KF Full details
- AMD Ryzen 7 5700X3D Full details
- Intel Core i5-14400 Full details
- Intel Core i9-10920X Full details
- AMD Ryzen 7 PRO 5845 Full details
- Intel Core i9-7940X Full details
- Intel Core i5-13600T Full details
- Intel Core i7-13700T Full details
- Intel Core i5-13490F Full details
- AMD Ryzen Threadripper 1950X Full details
- Intel Core i5-13400F Full details
- AMD Ryzen 7 5700G Full details
- Intel Core i5-14400F Full details
- Intel Core i7-11700K Full details
- Intel Core i9-11900K Full details
- AMD Ryzen 5 8600G Full details
- Intel Core i9-11900KF Full details
- Intel Core i5-13400 Full details
- AMD Ryzen 7 PRO 5750G Full details
- Intel Core i9-9920X Full details
- AMD Ryzen Threadripper 2920X Full details
- AMD Ryzen 7 5800 Full details
- AMD Ryzen 7 5700 Full details
- AMD Ryzen 7 3800X Full details
- Intel Core i9-10900K Full details
- Intel Xeon W-2195 Full details
- Intel Xeon W-2191B Full details
- AMD EPYC 7401P Full details
- Intel Xeon W-2265 Full details
- Intel Xeon Gold 6226R Full details
- Intel Xeon w3-2435 Full details
- Intel Xeon D-2796TE Full details
- Intel Xeon D-2775TE Full details
- Intel Xeon Gold 5317 Full details
- Intel Xeon E5-2696 v4 Full details
- Intel Xeon E5-2699A v4 Full details
- Intel Xeon W-1390P Full details
- Intel Xeon E5-2699 v4 Full details
- Intel Xeon W-3235 Full details
- AMD EPYC 7351P Full details
Impact of Changing Screen Resolution
Interestingly, if you're facing a processor bottleneck, altering the screen resolution may have a counterintuitive impact. Elevating the screen resolution will primarily stress the graphics card, thereby reducing the proportion of work that the processor needs to do in certain tasks. This makes it less likely that the processor will max out, though it does not replace the benefits of a processor upgrade for a balanced system.
Read moreReplace graphic cards
If the processor is causing the bottleneck, replacing the graphic card isn't generally recommended unless you're also planning to upgrade the processor. Downgrading your graphics card to better match the processor might alleviate the bottleneck, but it often results in a decrease in overall system performance, especially in graphics-heavy tasks like gaming or 3D rendering.
- NVIDIA GeForce GT 1030 Full details
- NVIDIA GeForce GTX 650 Ti Full details
- AMD Radeon RX 550X Full details
- NVIDIA GeForce GTX 460 Full details
- AMD Radeon HD 5970 Full details
- AMD Radeon RX Vega 11 Full details
- NVIDIA GeForce GTX 745 Full details
- AMD Radeon HD 7770 Full details
- AMD Radeon HD 5870 Full details
- AMD Radeon HD 6870 Full details
- NVIDIA GeForce GTX 460 v2 Full details
- NVIDIA GeForce GTX 645 Full details
- NVIDIA GeForce GTX 560 SE Full details
- AMD Radeon R7 450 Full details
- AMD Radeon RX 640 Full details
- AMD Radeon HD 6850 Full details
- AMD Radeon HD 5850 Full details
- NVIDIA GeForce GTX 460 SE Full details
- NVIDIA GeForce GT 645 Full details
- AMD Radeon R9 350 Full details
- AMD Radeon Vega 8 Full details
- AMD Radeon RX Vega 11 Processor Full details
- AMD Radeon R9 M360 Full details
- AMD Radeon Vega 11 Full details
- AMD Radeon RX 540 Full details
- NVIDIA GeForce GTX 650 Full details
- AMD Radeon HD 5830 Full details
- AMD Radeon HD 7750 Full details
- AMD Radeon E8860 Full details
- AMD Radeon RX Vega 10 Full details
- AMD Radeon HD 6790 Full details
- AMD Radeon RX Vega11 Full details
- AMD Radeon Vega 9 Full details
- AMD FirePro 3D V8800 Full details
- AMD Radeon Pro WX 3100 Full details
- NVIDIA Quadro K620 Full details
- NVIDIA Quadro K3100M Full details
- AMD FirePro V7900 Full details
- NVIDIA Quadro 5000M Full details
- AMD FirePro M5100 Full details
- AMD Radeon Pro Full details
- AMD FirePro M6100 Full details
- NVIDIA Quadro 5000 Full details
- NVIDIA Quadro K4000M Full details
- NVIDIA Quadro 5010M Full details
- AMD FirePro 3D V7800 Full details
- AMD FirePro W600 Full details
- NVIDIA Quadro P400 Full details
- NVIDIA Quadro K3000M Full details
- AMD FirePro M4000 Full details
Impact of Changing Screen Resolution
Increasing the screen resolution in this case will demand more from your graphics card and can make the processor's bottleneck less noticeable in some scenarios, but again, it won't entirely solve the underlying problem.
Read moreBottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.