Processor Intense Tasks bottleneck calculator
Intel Pentium M and NVIDIA GeForce GTX 680MX
Processor Intense Tasks
1280 × 800
1 monitor
1. Select purpose
Currently selected:
Processor Intense Tasks
2. Select processor
Currently selected:
Intel Pentium M
3. Select graphic card
Currently selected:
NVIDIA GeForce GTX 680MX
4. Select resolution
Currently selected:
1280 × 800 resolution
(1 monitor)
Calculation result
Bottleneck percentage
The Intel Pentium M may serve as a bottleneck for the NVIDIA GeForce GTX 680MX in the Processor Intense Tasks with 1280 × 800 and 1 monitor. Although the NVIDIA GeForce GTX 680MX is engineered to manage heavy graphical tasks, the Intel Pentium M might lack the processing power needed to fully unlock the NVIDIA GeForce GTX 680MX capabilities. This imbalance may inhibit the overall efficiency of your system, slowing down processing and possibly compromising graphical fidelity. For a more harmonious hardware setup, upgrading to a high-performing processor that can meet the demands of current software and games is advised.
In a configuration featuring the Intel Pentium M and NVIDIA GeForce GTX 680MX, with a screen resolution of 1280 × 800 and 1 monitor, the system experiences a 72.4% bottleneck for Processor Intense Tasks.
Processor and graphic card utilizations
In a computing setup featuring the Intel Pentium M and NVIDIA GeForce GTX 680MX, under the context of Processor Intense Tasks with a screen resolution of 1280 × 800 and 1 monitor, the processor is expected to have an utilization rate of 81.8%, while the graphics card is projected to be utilized at 20.8%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
In gaming scenarios, your NVIDIA GeForce GTX 680MX might not attain its full performance potential due to a lack of optimal utilization. This happens when the Intel Pentium M fails to handle and transmit data to the NVIDIA GeForce GTX 680MX at an adequate speed. As a result, the Intel Pentium M will be operating at its maximum capacity, while the NVIDIA GeForce GTX 680MX remains underutilized.
When it comes to bottlenecks, a processor bottleneck is generally viewed as more detrimental than a graphics card bottleneck. In cases of a processor bottleneck, the Intel Pentium M capacity reaches its limits, which may adversely affect other applications running concurrently. This situation can result in diminished responsiveness and multi-tasking capabilities.
Moreover, due to the processor bottleneck, the system might not leverage the full performance capabilities of the NVIDIA GeForce GTX 680MX. Consequently, there could be restrictions in graphical rendering, frame rates, and the overall gaming experience.
To visualize these bottlenecks, consider examining our heatmap. On this heatmap, the X-axis represents the CPU Score, while the Y-axis denotes the GPU Score. A quick glance at this heatmap can offer invaluable insights into potential bottlenecks within various system configurations.
By correlating your Intel Pentium M CPU Score and NVIDIA GeForce GTX 680MX GPU Score on the heatmap, you can acquire a more comprehensive understanding of how these components interact and where the bottlenecks might occur. Making well-informed hardware choices based on this heatmap analysis can lead to a more balanced and efficient computing setup for your specific needs.
Bottleneck solutions
Replace processor
When the processor becomes the system's bottleneck, upgrading it is often the most straightforward way to improve performance. Opting for a faster processor with more cores and higher clock speeds can effectively minimize or even eliminate the bottleneck, making it easier for your graphics card to perform to its maximum capability.
- AMD Ryzen 3 PRO 5475U Full details
- AMD Ryzen 3 5425U Full details
- Intel Core i9-8950HK Full details
- Intel Core i7-9750HF Full details
- Intel Core i7-1195G7 Full details
- Intel Core i7-9750H Full details
- Intel Xeon E-2176M Full details
- Intel Core i5-11300H Full details
- AMD Ryzen 5 4500U Full details
- Intel Core i3-1215U Full details
- Intel Core i5-11320H Full details
- Intel Core i7-9850H Full details
- AMD Ryzen 3 5400U Full details
- AMD Ryzen 3 7330U Full details
- AMD Ryzen 3 PRO 5450U Full details
- Intel Core i5-1230U Full details
- Intel Core i5-10500H Full details
- Intel Core i7-1165G7 Full details
- Intel Core i7-8750H Full details
- Intel Core i3-1125G4 Full details
- AMD Ryzen 3 5300U Full details
- Intel Core i5-1135G7 Full details
- Intel Core i5-1145G7 Full details
- Intel Core i5-9500TE Full details
- AMD Ryzen 3 PRO 4450U Full details
- Intel Core i7-11390H Full details
- Intel Core i5-1155G7 Full details
- Intel Core i7-8850H Full details
- Intel Core i7-1185G7 Full details
- Intel Core i5-8500B Full details
- AMD Ryzen 3 7320U Full details
- Intel Core i3-1305U Full details
- Intel Core i5-1038NG7 Full details
- Intel Core i7-1160G7 Full details
- AMD Ryzen 5 7520U Full details
- Intel U300 Full details
- Intel Core i7-1068NG7 Full details
- Intel Core i7-10710U Full details
- Intel Core i5-10400H Full details
- Intel Core i7-10810U Full details
- Intel Core i7-1180G7 Full details
- Intel Core i7-1065G7 Full details
- Intel Core i7-8559U Full details
- Intel Core i7-8809G Full details
- Intel Core i5-1130G7 Full details
- Intel Core i5-9300H Full details
- Intel Core i5-8260U Full details
- AMD Ryzen 5 3550U Full details
- Intel Core i7-8705G Full details
- Intel Core i5-8400H Full details
Impact of Changing Screen Resolution
Interestingly, if you're facing a processor bottleneck, altering the screen resolution may have a counterintuitive impact. Elevating the screen resolution will primarily stress the graphics card, thereby reducing the proportion of work that the processor needs to do in certain tasks. This makes it less likely that the processor will max out, though it does not replace the benefits of a processor upgrade for a balanced system.
Read moreReplace graphic cards
If the processor is causing the bottleneck, replacing the graphic card isn't generally recommended unless you're also planning to upgrade the processor. Downgrading your graphics card to better match the processor might alleviate the bottleneck, but it often results in a decrease in overall system performance, especially in graphics-heavy tasks like gaming or 3D rendering.
- NVIDIA GeForce GTS 360M Full details
- NVIDIA GeForce GT 555M Full details
- AMD Radeon R7 M340 Full details
- NVIDIA GeForce GT 640M LE Full details
- NVIDIA GeForce GT 635M Full details
- AMD Radeon HD 7570M Full details
- AMD Radeon HD 6610M Full details
- AMD Radeon R7 M360 Full details
- NVIDIA GeForce GT 820M Full details
- NVIDIA GeForce GT 550M Full details
- NVIDIA GeForce GT 720A Full details
- NVIDIA GeForce GTX 280M Full details
- AMD Radeon HD 7650M Full details
- AMD Radeon HD 7670M Full details
- AMD Radeon R5 M330 Full details
- AMD Radeon HD 7550M Full details
- NVIDIA GeForce 910M Full details
- NVIDIA GeForce 810A Full details
- AMD Radeon HD 7610M Full details
- NVIDIA GeForce GTX 285M Full details
- AMD Radeon HD 8500M Full details
- NVIDIA GeForce GT 735M Full details
- NVIDIA GeForce 820M Full details
- AMD Radeon R7 M260 Full details
- AMD Mobility Radeon HD 5730 Full details
- AMD Radeon HD 8670M Full details
- AMD Radeon 6600M Full details
- NVIDIA GeForce GT 435M Full details
- AMD Mobility Radeon HD 5570 Full details
- NVIDIA GeForce GT 425M Full details
- AMD Radeon R5 M255 Full details
- NVIDIA GeForce GT 630M Full details
- NVIDIA GeForce 615 Full details
- AMD Radeon R7 M265 Full details
- AMD Radeon R5 M335 Full details
- NVIDIA GeForce GTS 250M Full details
- NVIDIA GeForce 9800M GS Full details
- NVIDIA GeForce 820A Full details
- NVIDIA GeForce GT 540M Full details
- NVIDIA GeForce GT 625M Full details
- AMD Mobility Radeon HD 3870 X2 Full details
- AMD Mobility Radeon HD 4670 Full details
- NVIDIA GeForce 8800M GTX Full details
- NVIDIA GeForce GT 720M Full details
- NVIDIA GeForce GT 525M Full details
- NVIDIA GeForce 710M Full details
- NVIDIA GeForce GT625M Full details
- NVIDIA GeForce 800M Full details
- NVIDIA GeForce 705M Full details
- NVIDIA GeForce 9800M GTX Full details
Impact of Changing Screen Resolution
Increasing the screen resolution in this case will demand more from your graphics card and can make the processor's bottleneck less noticeable in some scenarios, but again, it won't entirely solve the underlying problem.
Read moreBottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.