Processor Intense Tasks bottleneck calculator
AMD PRO A12-8870 and NVIDIA Quadro P600
Processor Intense Tasks
5120 × 2880
1 monitor
1. Select purpose
Currently selected:
Processor Intense Tasks
2. Select processor
Currently selected:
AMD PRO A12-8870
3. Select graphic card
Currently selected:
NVIDIA Quadro P600
4. Select resolution
Currently selected:
5120 × 2880 resolution
(1 monitor)
Calculation result
Bottleneck percentage
In a system configuration featuring the AMD PRO A12-8870 and NVIDIA Quadro P600, the NVIDIA Quadro P600 could potentially act as a bottleneck to the AMD PRO A12-8870 performance in the Processor Intense Tasks with 5120 × 2880 and 1 monitor. While the AMD PRO A12-8870 is well-equipped to manage strenuous computational tasks, the NVIDIA Quadro P600 limited graphical prowess may compromise the overall system efficiency. This disparity could lead to decreased performance and less effective utilization of system resources. To rectify this imbalance, an upgrade to a more capable graphics card that complements the AMD PRO A12-8870 processing abilities is advisable.
With a screen resolution of 5120 × 2880 and 1 monitor, this configuration demonstrates a 17% graphics card bottleneck when performing Processor Intense Tasks.
Processor and graphic card utilizations
In a computing setup featuring the AMD PRO A12-8870 and NVIDIA Quadro P600, under the context of Processor Intense Tasks with a screen resolution of 5120 × 2880 and 1 monitor, the processor is expected to have an utilization rate of 62.4%, while the graphics card is projected to be utilized at 83.1%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
During gameplay scenarios, your AMD PRO A12-8870 might not operate at its full potential due to the constraints imposed by the NVIDIA Quadro P600. In such cases, the NVIDIA Quadro P600 may struggle to swiftly process and relay data, resulting in underutilization of the AMD PRO A12-8870. Therefore, the NVIDIA Quadro P600 will be operating at its maximum capacity, leaving the AMD PRO A12-8870 capabilities untapped.
In the hierarchy of bottlenecks, a graphics card bottleneck is often considered less severe than a processor bottleneck. When a graphics card bottleneck occurs, the NVIDIA Quadro P600 operates at its uppermost limits, thereby allowing you to extract the best performance possible from the card. This ensures that you benefit from the full scope of the NVIDIA Quadro P600 features.
One distinct advantage of not maxing out the AMD PRO A12-8870 is the enhanced ability to efficiently manage other background tasks. As the AMD PRO A12-8870 is not operating at full capacity while gaming, it can allocate computational resources to other ongoing activities like background processes or multitasking, without any performance trade-offs. This contributes to a smoother and more flexible overall system operation.
To gain a deeper understanding of these potential bottlenecks, consider referring to our heatmap. On the heatmap, the X-axis depicts the CPU Score, and the Y-axis signifies the GPU Score. This visualization can help identify the relationship between various CPUs and GPUs, giving you valuable insights into how to better balance your system.
By matching your AMD PRO A12-8870 CPU Score with the NVIDIA Quadro P600 GPU Score on the heatmap, you can more accurately assess how these components interact and pinpoint where bottlenecks may occur. Utilizing this heatmap analysis can guide you in making informed hardware decisions that lead to a more balanced and effective computing setup tailored to your specific needs.
Bottleneck solutions
Replace processor
If your graphic card is causing the bottleneck but you're considering replacing your processor, reconsider this approach. Unless your processor is already on the verge of becoming outdated, upgrading it might not offer a significant performance boost, particularly in graphics-heavy tasks.
- Intel Core2 Quad Q9650 Full details
- Intel Celeron G3950 Full details
- Intel Core2 Quad Q9550 Full details
- Intel Pentium G4400T Full details
- AMD Phenom II X4 960T Full details
- AMD Phenom II X4 940 Full details
- AMD Athlon II X4 645 Full details
- Intel Celeron G3920 Full details
- AMD A8-3850 Full details
- AMD Phenom II X4 850 Full details
- AMD Phenom II X4 B50 Full details
- Intel Core i3-3245 Full details
- AMD Phenom II X4 945 Full details
- Intel Core i5-660 Full details
- Intel Pentium G4500T Full details
- AMD Phenom II X4 B95 Full details
- AMD Phenom II X4 840 Full details
- AMD Athlon II X4 650 Full details
- Intel Core2 Extreme X9650 Full details
- Intel Pentium J4205 Full details
- Intel Pentium G3470 Full details
- Intel Core i3-3250 Full details
- Intel Celeron G4900 Full details
- Intel Core i7-4610Y Full details
- Intel Core i5-661 Full details
- AMD Phenom II X4 B55 Full details
- Intel Core i5-2390T Full details
- AMD Athlon II X4 651 Full details
- Intel Celeron G4920 Full details
- AMD Phenom II X4 955 Full details
- AMD Athlon II X4 555 Full details
- Intel Core i5-670 Full details
- AMD Phenom II X4 975 Full details
- AMD Phenom II X4 B99 Full details
- Intel Core i5-750 Full details
- AMD Phenom II X4 B97 Full details
- Intel Core i3-3240 Full details
- Intel Xeon X5365 Full details
- Intel Xeon E5-2403 Full details
- Intel Xeon X3363 Full details
- Intel Xeon E5606 Full details
- Intel Xeon E5440 Full details
- Intel Xeon X5450 Full details
- Intel Xeon X3360 Full details
- Intel Atom C3558 Full details
- Intel Xeon X3370 Full details
- Intel Atom C2750 Full details
- Intel Xeon E5520 Full details
- Intel Xeon L3426 Full details
- Intel Xeon X5460 Full details
Impact of Changing Screen Resolution
Increasing the resolution in this scenario will only make the bottleneck worse, as the GPU will be under even more stress, leading to lower frame rates and reduced graphical quality. It won't significantly ease the load on the already underutilized processor.
Read moreReplace graphic cards
When the graphic card becomes a system bottleneck, upgrading it can provide a significant boost in performance. Opt for a card that better matches the capabilities of your processor to get a more balanced system. This will also enable you to run games and applications at higher settings, offering a vastly improved user experience.
- AMD Radeon RX Vega M GH Full details
- NVIDIA GeForce GTX 1050 Ti Full details
- Intel Arc A380 Full details
- AMD Radeon R9 380X Full details
- NVIDIA GeForce GTX 960 Full details
- NVIDIA GeForce GTX 770 Full details
- AMD Radeon R9 285 Full details
- AMD Radeon R9 280X Full details
- AMD Radeon RX 6300 Full details
- AMD Radeon R9 380 Full details
- NVIDIA GeForce GTX 950 Full details
- NVIDIA GeForce GTX 670 Full details
- NVIDIA GeForce GTX 680 Full details
- AMD Radeon HD 7990 Full details
- NVIDIA GeForce GTX 690 Full details
- NVIDIA GeForce GTX 1050 Full details
- AMD Radeon R9 280 Full details
- AMD Radeon HD 8990 Full details
- NVIDIA GeForce GTX 760 Ti Full details
- AMD Radeon HD 7970 Full details
- AMD Radeon Eng Sample: 100-000000560-40_Y Full details
- AMD Radeon Sky 500 Full details
- AMD Radeon HD 7950 Full details
- NVIDIA GeForce GTX 760 Full details
- AMD Radeon R9 270X Full details
- NVIDIA GeForce GTX 1630 Full details
- AMD Radeon HD 7870 XT Full details
- NVIDIA GeForce GTX 580 Full details
- AMD Radeon HD 7870 Full details
- AMD Radeon R7 370 Full details
- NVIDIA GeForce GTX 660 Ti Full details
- AMD Radeon R9 270 Full details
- AMD Radeon RX 460 Full details
- NVIDIA GeForce GTX 480 Full details
- NVIDIA GeForce GTX 660 Full details
- NVIDIA GeForce GTX 750 Ti Full details
- NVIDIA GeForce GTX 570 Full details
- NVIDIA Quadro M4000 Full details
- NVIDIA Quadro K5200 Full details
- AMD FirePro W9000 Full details
- AMD FirePro W7100 Full details
- AMD Radeon Pro Vega 20 Full details
- AMD Radeon Pro WX 5100 Full details
- NVIDIA Quadro P1000 Full details
- AMD FirePro W7000 Adapter Full details
- NVIDIA Quadro K4200 Full details
- AMD FirePro W7000 Full details
- AMD FirePro W8000 Full details
- NVIDIA Quadro M2000 Full details
- NVIDIA Quadro K5000 Full details
Impact of Changing Screen Resolution
If your graphics card is bottlenecking the system, lowering the screen resolution will allow the card to handle data more efficiently, resulting in higher frames per second. However, it's worth noting that lower resolutions will require less data processing from the CPU, which could create a new bottleneck there.
Read moreBottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.