Processor Intense Tasks bottleneck calculator
AMD Sempron 2800+ and AMD Radeon RX Vega 8
Processor Intense Tasks
640 × 480
1 monitor
1. Select purpose
Currently selected:
Processor Intense Tasks
2. Select processor
Currently selected:
AMD Sempron 2800+
3. Select graphic card
Currently selected:
AMD Radeon RX Vega 8
4. Select resolution
Currently selected:
640 × 480 resolution
(1 monitor)
Calculation result
Bottleneck percentage
The AMD Sempron 2800+ may serve as a bottleneck for the AMD Radeon RX Vega 8 in the Processor Intense Tasks with 640 × 480 and 1 monitor. Although the AMD Radeon RX Vega 8 is engineered to manage heavy graphical tasks, the AMD Sempron 2800+ might lack the processing power needed to fully unlock the AMD Radeon RX Vega 8 capabilities. This imbalance may inhibit the overall efficiency of your system, slowing down processing and possibly compromising graphical fidelity. For a more harmonious hardware setup, upgrading to a high-performing processor that can meet the demands of current software and games is advised.
In a configuration featuring the AMD Sempron 2800+ and AMD Radeon RX Vega 8, with a screen resolution of 640 × 480 and 1 monitor, the system experiences a 44.4% bottleneck for Processor Intense Tasks.
Processor and graphic card utilizations
In a computing setup featuring the AMD Sempron 2800+ and AMD Radeon RX Vega 8, under the context of Processor Intense Tasks with a screen resolution of 640 × 480 and 1 monitor, the processor is expected to have an utilization rate of 82%, while the graphics card is projected to be utilized at 41.7%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
In gaming scenarios, your AMD Radeon RX Vega 8 might not attain its full performance potential due to a lack of optimal utilization. This happens when the AMD Sempron 2800+ fails to handle and transmit data to the AMD Radeon RX Vega 8 at an adequate speed. As a result, the AMD Sempron 2800+ will be operating at its maximum capacity, while the AMD Radeon RX Vega 8 remains underutilized.
When it comes to bottlenecks, a processor bottleneck is generally viewed as more detrimental than a graphics card bottleneck. In cases of a processor bottleneck, the AMD Sempron 2800+ capacity reaches its limits, which may adversely affect other applications running concurrently. This situation can result in diminished responsiveness and multi-tasking capabilities.
Moreover, due to the processor bottleneck, the system might not leverage the full performance capabilities of the AMD Radeon RX Vega 8. Consequently, there could be restrictions in graphical rendering, frame rates, and the overall gaming experience.
To visualize these bottlenecks, consider examining our heatmap. On this heatmap, the X-axis represents the CPU Score, while the Y-axis denotes the GPU Score. A quick glance at this heatmap can offer invaluable insights into potential bottlenecks within various system configurations.
By correlating your AMD Sempron 2800+ CPU Score and AMD Radeon RX Vega 8 GPU Score on the heatmap, you can acquire a more comprehensive understanding of how these components interact and where the bottlenecks might occur. Making well-informed hardware choices based on this heatmap analysis can lead to a more balanced and efficient computing setup for your specific needs.
Bottleneck solutions
Replace processor
When the processor becomes the system's bottleneck, upgrading it is often the most straightforward way to improve performance. Opting for a faster processor with more cores and higher clock speeds can effectively minimize or even eliminate the bottleneck, making it easier for your graphics card to perform to its maximum capability.
- AMD Phenom II X4 830 Full details
- Intel Pentium G3258 Full details
- Intel Core i3-2125 Full details
- AMD Phenom II X4 820 Full details
- Intel Pentium G3260 Full details
- Intel Pentium G2140 Full details
- Intel Core2 Quad Q6700 Full details
- AMD Phenom II X4 B25 Full details
- Intel Core2 Quad Q9400 Full details
- Intel Pentium G3430 Full details
- AMD Phenom II X4 910e Full details
- AMD A6-7480 Full details
- Intel Core i3-2105 Full details
- Intel Pentium G3260T Full details
- AMD Phenom 9750 Full details
- Intel Core i3-2100 Full details
- AMD A6-3620 Full details
- AMD Athlon 5370 Full details
- AMD Athlon II X3 455 Full details
- AMD A6-9500 Full details
- AMD Phenom 9950 Full details
- Intel Core2 Quad Q8300 Full details
- Intel Pentium G3220 Full details
- Intel Pentium G2120 Full details
- AMD PRO A6-8570 Full details
- Intel Celeron G1850 Full details
- Intel Core2 Extreme Q9300 Full details
- Intel Pentium G2130 Full details
- Intel Pentium G3420 Full details
- AMD Phenom II X4 905e Full details
- Intel Core i3-3220T Full details
- Intel Pentium G3240 Full details
- Intel Core i3-2120 Full details
- AMD Phenom II X4 805 Full details
- AMD Athlon II X4 605e Full details
- AMD Athlon II X4 610e Full details
- Intel Core2 Quad Q9300 Full details
- Intel Pentium G3250 Full details
- Intel Core i5-2415M Full details
- Intel Core i7-2655LE Full details
- Intel Xeon X3330 Full details
- Intel Xeon X3323 Full details
- Intel Xeon E5345 Full details
- Intel Xeon L5410 Full details
- Intel Xeon E5507 Full details
- Intel Xeon E5603 Full details
- Intel Xeon E5506 Full details
- Intel Xeon X3220 Full details
- Intel Xeon X5355 Full details
- Intel Xeon X3320 Full details
Impact of Changing Screen Resolution
Interestingly, if you're facing a processor bottleneck, altering the screen resolution may have a counterintuitive impact. Elevating the screen resolution will primarily stress the graphics card, thereby reducing the proportion of work that the processor needs to do in certain tasks. This makes it less likely that the processor will max out, though it does not replace the benefits of a processor upgrade for a balanced system.
Read moreReplace graphic cards
If the processor is causing the bottleneck, replacing the graphic card isn't generally recommended unless you're also planning to upgrade the processor. Downgrading your graphics card to better match the processor might alleviate the bottleneck, but it often results in a decrease in overall system performance, especially in graphics-heavy tasks like gaming or 3D rendering.
- NVIDIA GeForce GT 140 Full details
- AMD Radeon R5 PRO A8-9600B Full details
- AMD Radeon HD 2900 XT Full details
- NVIDIA GeForce GT 530 Full details
- NVIDIA GeForce 9800 GTX+ Full details
- NVIDIA GeForce 8800 GTS 512 Full details
- AMD Radeon HD 7650A Full details
- AMD Radeon Vega 3 3020e Full details
- NVIDIA GeForce 8800 GTX Full details
- AMD Radeon R6 PRO A8-8600B R6, 10 Compute Cores Full details
- AMD Radeon R7 PRO A12-8830B Full details
- AMD Radeon R7 PRO A12-8800B Full details
- NVIDIA GeForce GTS 250 Full details
- NVIDIA GeForce GT 430 Full details
- AMD Radeon R6 M255DX Full details
- NVIDIA GeForce GT 720 Full details
- AMD Radeon R5 PRO A10-8730B R5, 10 COMPUTE CORES Full details
- AMD Radeon HD 7570 Full details
- AMD Radeon R6 Full details
- AMD Radeon R5 A10-9600P Full details
- AMD Radeon HD 2900 PRO Full details
- Intel HD 4600 Full details
- AMD Radeon R7 PRO A10-9700B Full details
- NVIDIA GeForce GT 710 Full details
- AMD Radeon HD 5600 Full details
- AMD Radeon HD 5700 Full details
- NVIDIA GeForce 8800 Ultra Full details
- AMD Radeon R5 M430 Full details
- AMD Radeon HD 7660D Full details
- AMD Radeon Vega 2 Full details
- AMD Radeon Vega 3 Athlon Silver 3050e Full details
- NVIDIA GeForce GT 240 Full details
- AMD Radeon R5 330 Full details
- AMD Radeon HD 8650G Full details
- AMD Radeon HD 8670D Full details
- AMD Radeon R6 PRO A8-8600B Full details
- AMD Radeon R6 PRO A10-8700B Full details
- AMD Radeon R6 PRO A10-8700B R6, 10 Compute Cores Full details
- AMD Radeon R6 A10-8700P Full details
- AMD Radeon R5 240 Full details
- AMD Radeon HD 3870 Full details
- AMD FirePro M7740 Full details
- NVIDIA Quadro 1000M Full details
- NVIDIA Quadro FX 3800M Full details
- AMD FirePro V3900 Full details
- NVIDIA GRID K1 Full details
- NVIDIA Quadro 600 Full details
- NVIDIA GRID K180Q Full details
- AMD FirePro 3D V7750 Full details
- AMD FirePro 3D V5700 Full details
Impact of Changing Screen Resolution
Increasing the screen resolution in this case will demand more from your graphics card and can make the processor's bottleneck less noticeable in some scenarios, but again, it won't entirely solve the underlying problem.
Read moreBottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.