Processor Intense Tasks bottleneck calculator
AMD Phenom II N970 and NVIDIA GeForce GTX 1070 (Max-Q Design)
Processor Intense Tasks
3200 × 2048
1 monitor
1. Select purpose
Currently selected:
Processor Intense Tasks
2. Select processor
Currently selected:
AMD Phenom II N970
3. Select graphic card
Currently selected:
NVIDIA GeForce GTX 1070 (Max-Q Design)
4. Select resolution
Currently selected:
3200 × 2048 resolution
(1 monitor)
Calculation result
Bottleneck percentage
The AMD Phenom II N970 may serve as a bottleneck for the NVIDIA GeForce GTX 1070 (Max-Q Design) in the Processor Intense Tasks with 3200 × 2048 and 1 monitor. Although the NVIDIA GeForce GTX 1070 (Max-Q Design) is engineered to manage heavy graphical tasks, the AMD Phenom II N970 might lack the processing power needed to fully unlock the NVIDIA GeForce GTX 1070 (Max-Q Design) capabilities. This imbalance may inhibit the overall efficiency of your system, slowing down processing and possibly compromising graphical fidelity. For a more harmonious hardware setup, upgrading to a high-performing processor that can meet the demands of current software and games is advised.
In a configuration featuring the AMD Phenom II N970 and NVIDIA GeForce GTX 1070 (Max-Q Design), with a screen resolution of 3200 × 2048 and 1 monitor, the system experiences a 56.1% bottleneck for Processor Intense Tasks.
Processor and graphic card utilizations
In a computing setup featuring the AMD Phenom II N970 and NVIDIA GeForce GTX 1070 (Max-Q Design), under the context of Processor Intense Tasks with a screen resolution of 3200 × 2048 and 1 monitor, the processor is expected to have an utilization rate of 82.9%, while the graphics card is projected to be utilized at 33%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
In gaming scenarios, your NVIDIA GeForce GTX 1070 (Max-Q Design) might not attain its full performance potential due to a lack of optimal utilization. This happens when the AMD Phenom II N970 fails to handle and transmit data to the NVIDIA GeForce GTX 1070 (Max-Q Design) at an adequate speed. As a result, the AMD Phenom II N970 will be operating at its maximum capacity, while the NVIDIA GeForce GTX 1070 (Max-Q Design) remains underutilized.
When it comes to bottlenecks, a processor bottleneck is generally viewed as more detrimental than a graphics card bottleneck. In cases of a processor bottleneck, the AMD Phenom II N970 capacity reaches its limits, which may adversely affect other applications running concurrently. This situation can result in diminished responsiveness and multi-tasking capabilities.
Moreover, due to the processor bottleneck, the system might not leverage the full performance capabilities of the NVIDIA GeForce GTX 1070 (Max-Q Design). Consequently, there could be restrictions in graphical rendering, frame rates, and the overall gaming experience.
To visualize these bottlenecks, consider examining our heatmap. On this heatmap, the X-axis represents the CPU Score, while the Y-axis denotes the GPU Score. A quick glance at this heatmap can offer invaluable insights into potential bottlenecks within various system configurations.
By correlating your AMD Phenom II N970 CPU Score and NVIDIA GeForce GTX 1070 (Max-Q Design) GPU Score on the heatmap, you can acquire a more comprehensive understanding of how these components interact and where the bottlenecks might occur. Making well-informed hardware choices based on this heatmap analysis can lead to a more balanced and efficient computing setup for your specific needs.
Bottleneck solutions
Replace processor
When the processor becomes the system's bottleneck, upgrading it is often the most straightforward way to improve performance. Opting for a faster processor with more cores and higher clock speeds can effectively minimize or even eliminate the bottleneck, making it easier for your graphics card to perform to its maximum capability.
- AMD Ryzen 7 7735HS Full details
- Intel Core i9-11980HK Full details
- Intel Core i5-13500H Full details
- AMD Ryzen 7 6800HS Full details
- AMD Ryzen 7 PRO 6850H Full details
- AMD Ryzen 7 6800H Full details
- Intel Core i7-13705H Full details
- AMD Ryzen 9 5980HX Full details
- AMD Ryzen 9 6900HS Full details
- Intel Core Ultra 5 135H Full details
- Intel Core i7-12650H Full details
- AMD Ryzen 5 7640HS Full details
- AMD Ryzen 5 7640U Full details
- AMD Ryzen 9 5900HS Full details
- AMD Ryzen 7 6800HS Creator Edition Full details
- AMD Ryzen 9 6900HS Creator Edition Full details
- AMD Ryzen 7 PRO 6850HS Full details
- AMD Ryzen 9 PRO 6950H Full details
- AMD Ryzen 9 5900HX Full details
- Intel Core Ultra 5 125H Full details
- AMD Ryzen 9 PRO 6950HS Full details
- Intel Core i5-12600H Full details
- Intel Core i5-12500H Full details
- Intel Core i7-11800H Full details
- AMD Ryzen 7 5800H Full details
- AMD Ryzen 7 5800HS Full details
- Intel Core i5-1250P Full details
- Intel Core i7-1370P Full details
- Intel Core i7-1280P Full details
- Intel Core i7-11850H Full details
- AMD Ryzen 7 6800U Full details
- Intel Core i9-11900H Full details
- AMD Ryzen 7 Pro 7735U Full details
- AMD Ryzen 7 PRO 6860Z Full details
- AMD Ryzen 7 PRO 6850U Full details
- AMD Ryzen 7 7735U Full details
- AMD Ryzen 9 5980HS Full details
- Intel Core i9-11950H Full details
- Intel Core i5-13420H Full details
- AMD Ryzen 5 6600H Full details
- Intel Core i7-1360P Full details
- Intel Core i5-1340P Full details
- AMD Ryzen 9 4900HS Full details
- AMD Ryzen 9 4900H Full details
- Intel Core i5-1350P Full details
- AMD Ryzen 7 PRO 7730U Full details
- AMD Ryzen 5 7540U Full details
- AMD Ryzen 5 7535HS Full details
- Intel Core i5-12450HX Full details
- AMD Ryzen 7 4800H Full details
Impact of Changing Screen Resolution
Interestingly, if you're facing a processor bottleneck, altering the screen resolution may have a counterintuitive impact. Elevating the screen resolution will primarily stress the graphics card, thereby reducing the proportion of work that the processor needs to do in certain tasks. This makes it less likely that the processor will max out, though it does not replace the benefits of a processor upgrade for a balanced system.
Read moreReplace graphic cards
If the processor is causing the bottleneck, replacing the graphic card isn't generally recommended unless you're also planning to upgrade the processor. Downgrading your graphics card to better match the processor might alleviate the bottleneck, but it often results in a decrease in overall system performance, especially in graphics-heavy tasks like gaming or 3D rendering.
- AMD Radeon 740M Full details
- AMD Radeon HD8970M Full details
- NVIDIA GeForce GTX 960M Full details
- NVIDIA GeForce GTX 870M Full details
- NVIDIA Quadro M2000M Full details
- NVIDIA GeForce GTX 860M Full details
- NVIDIA GeForce GTX 960A Full details
- NVIDIA GeForce GTX 680M Full details
- NVIDIA Quadro M1200 Full details
- AMD Radeon R9 M470X Full details
- NVIDIA Quadro M1000M Full details
- NVIDIA GeForce GTX 675MX Full details
- AMD Radeon R9 M380 Full details
- NVIDIA Quadro M620 Full details
- NVIDIA GeForce GTX 770M Full details
- NVIDIA GeForce MX350 Full details
- NVIDIA GeForce MX330 Full details
- NVIDIA GeForce MX250 Full details
- AMD Radeon Pro WX 3200 Full details
- NVIDIA GeForce GTX 850M Full details
- NVIDIA GeForce GTX 950A Full details
- NVIDIA GeForce GTX 950M Full details
- AMD Radeon Pro WX 4150 Full details
- AMD Radeon R9 M290X Full details
- NVIDIA GeForce MX150 Full details
- NVIDIA GeForce GTX 485M Full details
- NVIDIA GeForce GTX 580M Full details
- NVIDIA GeForce 945M Full details
- NVIDIA Quadro M600M Full details
- NVIDIA GeForce GTX 765M Full details
- AMD Radeon Pro WX 4130 Full details
- NVIDIA GeForce GTX 670MX Full details
- NVIDIA GeForce GTX 675M Full details
- NVIDIA Quadro M520 Full details
- NVIDIA GeForce GTX 570M Full details
- NVIDIA GeForce MX130 Full details
- NVIDIA GeForce MX230 Full details
- AMD Radeon Pro WX 2100 Full details
- AMD Firepro W5170M Full details
- NVIDIA GeForce GTX 670M Full details
- AMD Radeon R9 M375X Full details
- NVIDIA GeForce GTX 760M Full details
- AMD Radeon HD 6900M Full details
- NVIDIA GeForce GT 755M Full details
- AMD Radeon HD 8870M Full details
- NVIDIA GeForce GTX 480M Full details
- Intel Iris Plus 650 Full details
- AMD Radeon R9 M275X Full details
- AMD FirePro M6000 Mobility Pro Full details
- AMD FirePro M4000 Mobility Pro Full details
Impact of Changing Screen Resolution
Increasing the screen resolution in this case will demand more from your graphics card and can make the processor's bottleneck less noticeable in some scenarios, but again, it won't entirely solve the underlying problem.
Read moreBottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.