Processor Intense Tasks bottleneck calculator
AMD Athlon LE-1620 and AMD Radeon 540
Processor Intense Tasks
3200 × 2048
1 monitor
1. Select purpose
Currently selected:
Processor Intense Tasks
2. Select processor
Currently selected:
AMD Athlon LE-1620
3. Select graphic card
Currently selected:
AMD Radeon 540
4. Select resolution
Currently selected:
3200 × 2048 resolution
(1 monitor)
Calculation result
Bottleneck percentage
The AMD Athlon LE-1620 may serve as a bottleneck for the AMD Radeon 540 in the Processor Intense Tasks with 3200 × 2048 and 1 monitor. Although the AMD Radeon 540 is engineered to manage heavy graphical tasks, the AMD Athlon LE-1620 might lack the processing power needed to fully unlock the AMD Radeon 540 capabilities. This imbalance may inhibit the overall efficiency of your system, slowing down processing and possibly compromising graphical fidelity. For a more harmonious hardware setup, upgrading to a high-performing processor that can meet the demands of current software and games is advised.
In a configuration featuring the AMD Athlon LE-1620 and AMD Radeon 540, with a screen resolution of 3200 × 2048 and 1 monitor, the system experiences a 7.7% bottleneck for Processor Intense Tasks.
Processor and graphic card utilizations
In a computing setup featuring the AMD Athlon LE-1620 and AMD Radeon 540, under the context of Processor Intense Tasks with a screen resolution of 3200 × 2048 and 1 monitor, the processor is expected to have an utilization rate of 82.3%, while the graphics card is projected to be utilized at 69.3%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
In gaming scenarios, your AMD Radeon 540 might not attain its full performance potential due to a lack of optimal utilization. This happens when the AMD Athlon LE-1620 fails to handle and transmit data to the AMD Radeon 540 at an adequate speed. As a result, the AMD Athlon LE-1620 will be operating at its maximum capacity, while the AMD Radeon 540 remains underutilized.
When it comes to bottlenecks, a processor bottleneck is generally viewed as more detrimental than a graphics card bottleneck. In cases of a processor bottleneck, the AMD Athlon LE-1620 capacity reaches its limits, which may adversely affect other applications running concurrently. This situation can result in diminished responsiveness and multi-tasking capabilities.
Moreover, due to the processor bottleneck, the system might not leverage the full performance capabilities of the AMD Radeon 540. Consequently, there could be restrictions in graphical rendering, frame rates, and the overall gaming experience.
To visualize these bottlenecks, consider examining our heatmap. On this heatmap, the X-axis represents the CPU Score, while the Y-axis denotes the GPU Score. A quick glance at this heatmap can offer invaluable insights into potential bottlenecks within various system configurations.
By correlating your AMD Athlon LE-1620 CPU Score and AMD Radeon 540 GPU Score on the heatmap, you can acquire a more comprehensive understanding of how these components interact and where the bottlenecks might occur. Making well-informed hardware choices based on this heatmap analysis can lead to a more balanced and efficient computing setup for your specific needs.
Bottleneck solutions
Replace processor
When the processor becomes the system's bottleneck, upgrading it is often the most straightforward way to improve performance. Opting for a faster processor with more cores and higher clock speeds can effectively minimize or even eliminate the bottleneck, making it easier for your graphics card to perform to its maximum capability.
- AMD E2-3200 Full details
- Intel Pentium E5400 Full details
- AMD Athlon II X2 215 Full details
- Intel Core2 Duo E8135 Full details
- AMD Athlon 5200B Full details
- Intel Celeron E3200 Full details
- AMD Athlon 64 X2 5200+ Full details
- AMD Athlon 5050e Full details
- Intel Pentium E2220 Full details
- Intel Celeron E3400 Full details
- AMD Athlon 5000B Full details
- Intel Core2 Duo E4600 Full details
- AMD Athlon 5200 Full details
- AMD Athlon 5000 Full details
- Intel Core2 Duo E6550 Full details
- Intel Pentium G620T Full details
- Intel Pentium E5300 Full details
- AMD Athlon 7550 Full details
- AMD Athlon 64 X2 5400+ Full details
- AMD Athlon 64 X2 5600+ Full details
- Intel Core2 Duo E4700 Full details
- AMD Athlon 5400B Full details
- Intel Pentium E5200 Full details
- AMD Athlon 64 X2 6000+ Full details
- Intel Celeron E3500 Full details
- Intel Core2 Duo E6600 Full details
- AMD A4-3300 Full details
- AMD Athlon II X2 4400e Full details
- Intel Core2 Duo E7300 Full details
- AMD Athlon 64 FX-60 Full details
- AMD Athlon 4450B Full details
- AMD Athlon II X2 260u Full details
- AMD Athlon 64 X2 4200+ Full details
- Intel Core2 Duo E6320 Full details
- AMD Athlon 64 X2 4600+ Full details
- Intel Pentium E2200 Full details
- Intel Celeron E1400 Full details
- Intel Core2 Duo E4500 Full details
- Intel Core2 Duo E6420 Full details
- Intel Core2 Duo E6400 Full details
- AMD Athlon 64 X2 5000+ Full details
- AMD Athlon 4850e Full details
- AMD Athlon 7450 Full details
- Intel Xeon 5160 Full details
- Intel Xeon 3060 Full details
- Intel Xeon 5140 Full details
- Intel Xeon 3065 Full details
- Intel Xeon Full details
- Intel Xeon 5150 Full details
- AMD Opteron 180 Full details
Impact of Changing Screen Resolution
Interestingly, if you're facing a processor bottleneck, altering the screen resolution may have a counterintuitive impact. Elevating the screen resolution will primarily stress the graphics card, thereby reducing the proportion of work that the processor needs to do in certain tasks. This makes it less likely that the processor will max out, though it does not replace the benefits of a processor upgrade for a balanced system.
Read moreReplace graphic cards
If the processor is causing the bottleneck, replacing the graphic card isn't generally recommended unless you're also planning to upgrade the processor. Downgrading your graphics card to better match the processor might alleviate the bottleneck, but it often results in a decrease in overall system performance, especially in graphics-heavy tasks like gaming or 3D rendering.
- AMD Radeon HD 4850 X2 Full details
- AMD Radeon HD 5750 Full details
- AMD Radeon R7 Opteron X3421 Full details
- NVIDIA GeForce GT 640 Full details
- AMD Radeon HD 7730 Full details
- NVIDIA GeForce GTX 295 Full details
- NVIDIA GeForce GTX 260 Full details
- AMD Radeon HD 6770 Full details
- Intel UHD Graphics 620 Full details
- AMD Radeon Vega 3 Athlon 3000G Full details
- AMD Radeon R7 340 Full details
- AMD Radeon 530 Full details
- AMD Radeon HD 6750 Full details
- AMD Radeon R7 A12-9730P Radeon Full details
- AMD Radeon R7 250 Full details
- AMD Radeon R7 M460 Full details
- AMD Radeon 535 Full details
- AMD Radeon R7 A12-9800 Radeon Full details
- AMD Radeon 625 Full details
- AMD Radeon R7 M350 Full details
- AMD Radeon R7 430 Full details
- AMD Radeon R7 M465 Full details
- NVIDIA GeForce GT 545 Full details
- AMD Radeon R7 A10-7870K Full details
- AMD Radeon HD 8570 Full details
- AMD Radeon R7 M445 Full details
- AMD Radeon R7 PRO A10-8850B Full details
- AMD Radeon R7 PRO A12-9800E Full details
- AMD Radeon R7 A10-7850K Full details
- AMD Radeon R7 A10-9700E Radeon Full details
- AMD Radeon R7 PRO A10-9700E Full details
- AMD Radeon R5 A10-9630P Full details
- AMD Radeon R5 340 Full details
- AMD Radeon HD 4850 Full details
- AMD Radeon R7 A10-9700 Radeon Full details
- AMD FirePro M4170 Full details
- AMD Firepro W4190M Full details
- AMD FirePro V5800 Full details
- AMD FirePro 3D V8700 Full details
- NVIDIA Quadro FX 5800 Full details
- AMD FirePro 3D V5800 Full details
- NVIDIA Quadro 3000M Full details
- NVIDIA Quadro K2000M Full details
- AMD FirePro W4170M Full details
- AMD Firepro M4100 Full details
- NVIDIA Quadro K1100M Full details
- NVIDIA Quadro 2000 Full details
- AMD FirePro M4150 Full details
- NVIDIA Quadro FX 4800 Full details
- AMD FirePro V4900 Full details
Impact of Changing Screen Resolution
Increasing the screen resolution in this case will demand more from your graphics card and can make the processor's bottleneck less noticeable in some scenarios, but again, it won't entirely solve the underlying problem.
Read moreBottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.