Processor Intense Tasks bottleneck calculator
AMD Athlon II X4 615e and NVIDIA GRID K520
Processor Intense Tasks
1680 × 1050
1 monitor
1. Select purpose
Currently selected:
Processor Intense Tasks
2. Select processor
Currently selected:
AMD Athlon II X4 615e
3. Select graphic card
Currently selected:
NVIDIA GRID K520
4. Select resolution
Currently selected:
1680 × 1050 resolution
(1 monitor)
Calculation result
Bottleneck percentage
The AMD Athlon II X4 615e may serve as a bottleneck for the NVIDIA GRID K520 in the Processor Intense Tasks with 1680 × 1050 and 1 monitor. Although the NVIDIA GRID K520 is engineered to manage heavy graphical tasks, the AMD Athlon II X4 615e might lack the processing power needed to fully unlock the NVIDIA GRID K520 capabilities. This imbalance may inhibit the overall efficiency of your system, slowing down processing and possibly compromising graphical fidelity. For a more harmonious hardware setup, upgrading to a high-performing processor that can meet the demands of current software and games is advised.
In a configuration featuring the AMD Athlon II X4 615e and NVIDIA GRID K520, with a screen resolution of 1680 × 1050 and 1 monitor, the system experiences a 30.3% bottleneck for Processor Intense Tasks.
Processor and graphic card utilizations
In a computing setup featuring the AMD Athlon II X4 615e and NVIDIA GRID K520, under the context of Processor Intense Tasks with a screen resolution of 1680 × 1050 and 1 monitor, the processor is expected to have an utilization rate of 83.1%, while the graphics card is projected to be utilized at 52.4%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
In gaming scenarios, your NVIDIA GRID K520 might not attain its full performance potential due to a lack of optimal utilization. This happens when the AMD Athlon II X4 615e fails to handle and transmit data to the NVIDIA GRID K520 at an adequate speed. As a result, the AMD Athlon II X4 615e will be operating at its maximum capacity, while the NVIDIA GRID K520 remains underutilized.
When it comes to bottlenecks, a processor bottleneck is generally viewed as more detrimental than a graphics card bottleneck. In cases of a processor bottleneck, the AMD Athlon II X4 615e capacity reaches its limits, which may adversely affect other applications running concurrently. This situation can result in diminished responsiveness and multi-tasking capabilities.
Moreover, due to the processor bottleneck, the system might not leverage the full performance capabilities of the NVIDIA GRID K520. Consequently, there could be restrictions in graphical rendering, frame rates, and the overall gaming experience.
To visualize these bottlenecks, consider examining our heatmap. On this heatmap, the X-axis represents the CPU Score, while the Y-axis denotes the GPU Score. A quick glance at this heatmap can offer invaluable insights into potential bottlenecks within various system configurations.
By correlating your AMD Athlon II X4 615e CPU Score and NVIDIA GRID K520 GPU Score on the heatmap, you can acquire a more comprehensive understanding of how these components interact and where the bottlenecks might occur. Making well-informed hardware choices based on this heatmap analysis can lead to a more balanced and efficient computing setup for your specific needs.
Bottleneck solutions
Replace processor
When the processor becomes the system's bottleneck, upgrading it is often the most straightforward way to improve performance. Opting for a faster processor with more cores and higher clock speeds can effectively minimize or even eliminate the bottleneck, making it easier for your graphics card to perform to its maximum capability.
- Intel Core i3-9350KF Full details
- Intel Core i7-5775R Full details
- Intel Core i7-7700T Full details
- AMD Ryzen 5 PRO 2400GE Full details
- Intel Core i7-5775C Full details
- Intel Core i5-8500T Full details
- AMD Ryzen 5 1400 Full details
- AMD Ryzen 3 3200G Full details
- Intel Core i7-4790 Full details
- Intel Core i7-4770 Full details
- Intel Core i7-4770K Full details
- Intel Core i7-980 Full details
- AMD Ryzen 3 1300X Full details
- AMD Ryzen 3 PRO 3200G Full details
- AMD Athlon Gold PRO 3150GE Full details
- Intel Core i7-4790S Full details
- Intel Core i7-990X Full details
- AMD Athlon Gold 3150G Full details
- Intel Core i7-4771 Full details
- Intel Core i7-6700T Full details
- AMD Ryzen 3 PRO 1300 Full details
- AMD Ryzen 3 3200GE Full details
- Intel Xeon E5-1630 v4 Full details
- Intel Xeon E5-2650L v2 Full details
- Intel Xeon E5-2640 v2 Full details
- Intel Xeon E-2224G Full details
- Intel Xeon E5-2620 v3 Full details
- Intel Xeon E3-1545M v5 Full details
- Intel Xeon E3-1575M v5 Full details
- Intel Xeon E5-2650 Full details
- Intel Xeon E3-1505M v5 Full details
- Intel Xeon E5-2623 v4 Full details
- Intel Xeon E-2124 Full details
- Intel Xeon E3-1285 v3 Full details
- Intel Xeon E5-1620 v3 Full details
- Intel Xeon W3680 Full details
- Intel Xeon E3-1245 v3 Full details
- Intel Xeon X5690 Full details
- Intel Xeon E5-2430 v2 Full details
- Intel Xeon E3-1231 v3 Full details
- Intel Xeon E3-1240 v3 Full details
- Intel Xeon E3-1241 v3 Full details
- Intel Xeon E3-1275 v3 Full details
- Intel Xeon W3690 Full details
- Intel Xeon E5-2637 v3 Full details
- Intel Xeon E3-1246 v3 Full details
- Intel Xeon E3-1270 v3 Full details
- Intel Xeon E-2224 Full details
- Intel Xeon E5-1620 v4 Full details
- Intel Xeon E5-1630 v3 Full details
Impact of Changing Screen Resolution
Interestingly, if you're facing a processor bottleneck, altering the screen resolution may have a counterintuitive impact. Elevating the screen resolution will primarily stress the graphics card, thereby reducing the proportion of work that the processor needs to do in certain tasks. This makes it less likely that the processor will max out, though it does not replace the benefits of a processor upgrade for a balanced system.
Read moreReplace graphic cards
If the processor is causing the bottleneck, replacing the graphic card isn't generally recommended unless you're also planning to upgrade the processor. Downgrading your graphics card to better match the processor might alleviate the bottleneck, but it often results in a decrease in overall system performance, especially in graphics-heavy tasks like gaming or 3D rendering.
- AMD Radeon RX Vega 11 Full details
- NVIDIA GeForce GTX 745 Full details
- NVIDIA GeForce GTX 460 v2 Full details
- NVIDIA GeForce GTX 645 Full details
- NVIDIA GeForce GTX 560 SE Full details
- AMD Radeon R7 450 Full details
- AMD Radeon RX 640 Full details
- AMD Radeon HD 6850 Full details
- AMD Radeon HD 5850 Full details
- NVIDIA GeForce GTX 460 SE Full details
- NVIDIA GeForce GT 645 Full details
- AMD Radeon R9 350 Full details
- AMD Radeon Vega 8 Full details
- AMD Radeon RX Vega 11 Processor Full details
- AMD Radeon HD 5830 Full details
- NVIDIA GeForce GTX 650 Full details
- AMD Radeon R9 M360 Full details
- AMD Radeon Vega 11 Full details
- AMD Radeon RX 540 Full details
- AMD Radeon HD 7750 Full details
- NVIDIA GeForce GTX 550 Ti Full details
- AMD Radeon Vega 10 Full details
- NVIDIA GeForce GTX 555 Full details
- AMD Radeon Vega 9 Full details
- AMD Radeon RX Vega11 Full details
- AMD Radeon HD 6790 Full details
- AMD Radeon RX Vega 10 Full details
- AMD Radeon E8860 Full details
- NVIDIA GeForce GTX 285 Full details
- AMD Radeon HD 4890 Full details
- NVIDIA GeForce GT 740 Full details
- AMD Radeon RX Vega 8 Full details
- AMD Radeon R7 FX-9830P Radeon Full details
- AMD Radeon R9 255 Full details
- NVIDIA Quadro 5000M Full details
- AMD FirePro M5100 Full details
- AMD Radeon Pro Full details
- AMD FirePro M6100 Full details
- NVIDIA Quadro 5000 Full details
- NVIDIA Quadro K4000M Full details
- NVIDIA Quadro 5010M Full details
- AMD FirePro 3D V7800 Full details
- NVIDIA Quadro K2000 Full details
- NVIDIA Quadro K2000D Full details
- AMD FirePro M4000 Full details
- NVIDIA Quadro K3000M Full details
- NVIDIA Quadro P400 Full details
- AMD FirePro W600 Full details
- AMD FirePro W4100 Full details
- NVIDIA Quadro 4000 Full details
Impact of Changing Screen Resolution
Increasing the screen resolution in this case will demand more from your graphics card and can make the processor's bottleneck less noticeable in some scenarios, but again, it won't entirely solve the underlying problem.
Read moreBottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.