Processor Intense Tasks bottleneck calculator
AMD Athlon 4050e and NVIDIA Quadro K4000M
Processor Intense Tasks
1920 × 1200
1 monitor
1. Select purpose
Currently selected:
Processor Intense Tasks
2. Select processor
Currently selected:
AMD Athlon 4050e
3. Select graphic card
Currently selected:
NVIDIA Quadro K4000M
4. Select resolution
Currently selected:
1920 × 1200 resolution
(1 monitor)
Calculation result
Bottleneck percentage
The AMD Athlon 4050e may serve as a bottleneck for the NVIDIA Quadro K4000M in the Processor Intense Tasks with 1920 × 1200 and 1 monitor. Although the NVIDIA Quadro K4000M is engineered to manage heavy graphical tasks, the AMD Athlon 4050e might lack the processing power needed to fully unlock the NVIDIA Quadro K4000M capabilities. This imbalance may inhibit the overall efficiency of your system, slowing down processing and possibly compromising graphical fidelity. For a more harmonious hardware setup, upgrading to a high-performing processor that can meet the demands of current software and games is advised.
In a configuration featuring the AMD Athlon 4050e and NVIDIA Quadro K4000M, with a screen resolution of 1920 × 1200 and 1 monitor, the system experiences a 34.5% bottleneck for Processor Intense Tasks.
Processor and graphic card utilizations
In a computing setup featuring the AMD Athlon 4050e and NVIDIA Quadro K4000M, under the context of Processor Intense Tasks with a screen resolution of 1920 × 1200 and 1 monitor, the processor is expected to have an utilization rate of 82.5%, while the graphics card is projected to be utilized at 49.2%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
In gaming scenarios, your NVIDIA Quadro K4000M might not attain its full performance potential due to a lack of optimal utilization. This happens when the AMD Athlon 4050e fails to handle and transmit data to the NVIDIA Quadro K4000M at an adequate speed. As a result, the AMD Athlon 4050e will be operating at its maximum capacity, while the NVIDIA Quadro K4000M remains underutilized.
When it comes to bottlenecks, a processor bottleneck is generally viewed as more detrimental than a graphics card bottleneck. In cases of a processor bottleneck, the AMD Athlon 4050e capacity reaches its limits, which may adversely affect other applications running concurrently. This situation can result in diminished responsiveness and multi-tasking capabilities.
Moreover, due to the processor bottleneck, the system might not leverage the full performance capabilities of the NVIDIA Quadro K4000M. Consequently, there could be restrictions in graphical rendering, frame rates, and the overall gaming experience.
To visualize these bottlenecks, consider examining our heatmap. On this heatmap, the X-axis represents the CPU Score, while the Y-axis denotes the GPU Score. A quick glance at this heatmap can offer invaluable insights into potential bottlenecks within various system configurations.
By correlating your AMD Athlon 4050e CPU Score and NVIDIA Quadro K4000M GPU Score on the heatmap, you can acquire a more comprehensive understanding of how these components interact and where the bottlenecks might occur. Making well-informed hardware choices based on this heatmap analysis can lead to a more balanced and efficient computing setup for your specific needs.
Bottleneck solutions
Replace processor
When the processor becomes the system's bottleneck, upgrading it is often the most straightforward way to improve performance. Opting for a faster processor with more cores and higher clock speeds can effectively minimize or even eliminate the bottleneck, making it easier for your graphics card to perform to its maximum capability.
- AMD Athlon II X4 559 Full details
- AMD A8-5500 Full details
- AMD FX-4100 Full details
- AMD A8-5500B Full details
- Intel Core i5-680 Full details
- AMD Athlon X4 750 Full details
- AMD Athlon X4 740 Full details
- AMD Phenom II X4 965 Full details
- AMD Phenom II X4 B60 Full details
- Intel Core i5-760 Full details
- Intel Celeron G5900 Full details
- AMD FX-4130 Full details
- Intel Celeron J4115 Full details
- Intel Core2 Extreme X9770 Full details
- AMD Phenom II X4 B65 Full details
- Intel Pentium G4520 Full details
- AMD A10-5700 Full details
- AMD Phenom II X4 970 Full details
- Intel Pentium G4500 Full details
- Intel Core2 Quad Q9650 Full details
- Intel Celeron G3950 Full details
- Intel Core2 Quad Q9550 Full details
- Intel Pentium G4400T Full details
- AMD Phenom II X4 960T Full details
- AMD Phenom II X4 940 Full details
- AMD Athlon II X4 645 Full details
- Intel Celeron G3920 Full details
- AMD A8-3850 Full details
- AMD Phenom II X4 850 Full details
- AMD Phenom II X4 B50 Full details
- Intel Core i3-3245 Full details
- AMD Phenom II X4 945 Full details
- Intel Core i5-660 Full details
- Intel Pentium G4500T Full details
- AMD Phenom II X4 B95 Full details
- AMD Phenom II X4 840 Full details
- AMD Athlon II X4 650 Full details
- Intel Xeon E5-2407 Full details
- Intel Xeon E5607 Full details
- Intel Xeon E5530 Full details
- Intel Xeon E5-2603 v2 Full details
- Intel Xeon X5482 Full details
- Intel Xeon X3440 Full details
- Intel Xeon X5365 Full details
- Intel Xeon E5-2403 Full details
- Intel Xeon X3363 Full details
- Intel Xeon E5606 Full details
- Intel Xeon E5440 Full details
- Intel Xeon X5450 Full details
- Intel Xeon X3360 Full details
Impact of Changing Screen Resolution
Interestingly, if you're facing a processor bottleneck, altering the screen resolution may have a counterintuitive impact. Elevating the screen resolution will primarily stress the graphics card, thereby reducing the proportion of work that the processor needs to do in certain tasks. This makes it less likely that the processor will max out, though it does not replace the benefits of a processor upgrade for a balanced system.
Read moreReplace graphic cards
If the processor is causing the bottleneck, replacing the graphic card isn't generally recommended unless you're also planning to upgrade the processor. Downgrading your graphics card to better match the processor might alleviate the bottleneck, but it often results in a decrease in overall system performance, especially in graphics-heavy tasks like gaming or 3D rendering.
- Intel UHD Graphics 620 Full details
- AMD Radeon Vega 3 Athlon 3000G Full details
- AMD Radeon R7 340 Full details
- AMD Radeon 530 Full details
- AMD Radeon HD 6750 Full details
- AMD Radeon R7 A12-9730P Radeon Full details
- AMD Radeon R7 250 Full details
- AMD Radeon R7 M460 Full details
- AMD Radeon 535 Full details
- AMD Radeon R7 A12-9800 Radeon Full details
- AMD Radeon 625 Full details
- AMD Radeon E6760 Full details
- AMD Radeon R7 PRO A12-9800 Full details
- AMD Radeon HD 7670 Full details
- AMD Radeon R7 A10 PRO-7850B Full details
- AMD Radeon Vega 3 Full details
- AMD Radeon R7 PRO A8-9600 Full details
- AMD Radeon 620 Full details
- AMD Radeon R7 PRO A10-8770 Full details
- AMD Radeon R7 M440 Full details
- AMD Radeon R7 240 Full details
- AMD Radeon R7 PRO A12-8870 Full details
- AMD Radeon HD 4770 Full details
- AMD Radeon R7 A8-8650 Full details
- AMD Radeon R7 A12-9800E Radeon Full details
- AMD Radeon R5 430 Full details
- AMD Radeon R7 PRO A12-8870E Full details
- AMD Radeon R5 A6-9500 Radeon R5, 8 COMPUTE CORES Full details
- AMD Radeon R7 A10-7860K Full details
- AMD Radeon R7 A10-9700 Radeon Full details
- AMD Radeon HD 4850 Full details
- AMD Radeon R5 340 Full details
- AMD Radeon HD 8570 Full details
- AMD Radeon R7 M445 Full details
- AMD Radeon R7 PRO A10-8850B Full details
- AMD Radeon R7 PRO A12-9800E Full details
- AMD Radeon R7 A10-7850K Full details
- AMD Radeon R7 A10-9700E Radeon Full details
- AMD Radeon R7 PRO A10-9700E Full details
- AMD Radeon R5 A10-9630P Full details
- NVIDIA Quadro 3000M Full details
- NVIDIA Quadro K2000M Full details
- AMD FirePro W4170M Full details
- AMD Firepro M4100 Full details
- AMD FirePro W2100 Full details
- NVIDIA GRID K220Q Full details
- NVIDIA Quadro 2000 Full details
- AMD FirePro M4150 Full details
- NVIDIA Quadro FX 4800 Full details
- AMD FirePro V4900 Full details
Impact of Changing Screen Resolution
Increasing the screen resolution in this case will demand more from your graphics card and can make the processor's bottleneck less noticeable in some scenarios, but again, it won't entirely solve the underlying problem.
Read moreBottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.