The Incredible Adventures of Van Helsing III bottleneck calculator
AMD Athlon II X4 650 and AMD Radeon RX 560X
The Incredible Adventures of Van Helsing III
10240 × 4320
1 monitor
1. Select game
Currently selected:
The Incredible Adventures of Van Helsing III
2. Select processor
Currently selected:
AMD Athlon II X4 650
3. Select graphic card
Currently selected:
AMD Radeon RX 560X
4. Select resolution
Currently selected:
10240 × 4320 resolution
(1 monitor)
Calculation result
Bottleneck percentage
When configuring a high-performance computing setup, it's imperative to ensure that each hardware component is well-matched with its counterparts to provide seamless and optimal system performance. In the case of the AMD Athlon II X4 650 and AMD Radeon RX 560X in the The Incredible Adventures of Van Helsing III with 10240 × 4320 and 1 monitor, it appears that hardware compatibility has been achieved superbly, as evidenced by the calculated bottleneck percentage of 0%.
To elaborate, a bottleneck occurs when one component restricts the maximum efficiency of another, leading to suboptimal performance and reduced system effectiveness. However, in this configuration, that is not a concern. Any bottleneck percentage below 5% is generally deemed insignificant, and our current bottleneck value sits at 0%, which means you can expect superior system performance.
Processor and graphic card utilizations
In a computing setup featuring the AMD Athlon II X4 650 and AMD Radeon RX 560X, under the context of The Incredible Adventures of Van Helsing III with a screen resolution of 10240 × 4320 and 1 monitor, the processor is expected to have an utilization rate of 81.1%, while the graphics card is projected to be utilized at 83.3%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
The heatmap serves as a graphical representation to further confirm the compatibility between the AMD Athlon II X4 650 and AMD Radeon RX 560X. On this heatmap, the x-axis corresponds to the CPU Score, and the y-axis corresponds to the GPU Score. In a perfectly balanced system such as this, the intersection point of the AMD Athlon II X4 650 and AMD Radeon RX 560X will fall within the "no bottleneck zone."
The "no bottleneck zone" is an area on the heatmap where the hardware components are not only compatible but are also optimally matched to provide peak system performance. When the intersection of the CPU and GPU scores resides in this zone, it is a strong indicator that the system is balanced and will deliver excellent performance for The Incredible Adventures of Van Helsing III. The presence of both the AMD Athlon II X4 650 and AMD Radeon RX 560X in this zone confirms that neither component will hinder the performance of the other, leading to a seamless and highly efficient computing experience.
Mapping your AMD Athlon II X4 650 CPU Score against the AMD Radeon RX 560X GPU Score can provide a comprehensive view of how these components interact and where bottlenecks are most likely to happen. Leveraging this heatmap data could guide you in making more balanced hardware selections suitable for your specific computing needs.
General bottleneck calculations
The bottleneck calculations presented here are geared specifically towards in-game scenarios, providing valuable insights into how your hardware configuration could impact gaming performance. However, it's crucial to understand that bottlenecks can manifest in various types of tasks and applications. Below, you will find bottleneck calculations segmented into three primary categories: General Tasks, CPU Intensive Tasks, and GPU Intensive Tasks. This segmentation allows for a more nuanced understanding of how your system's components interact under different types of workloads.
General tasks bottleneck result
For general tasks that include web browsing, video streaming, office applications, and basic multitasking, the bottleneck result offers a comprehensive look at how well your CPU and GPU are balanced. If the bottleneck percentage leans heavily towards either the CPU or GPU, it might be beneficial to consider an upgrade for the more taxed component to ensure smoother system performance.
CPU intensive tasks bottleneck result
When it comes to CPU intensive tasks, such as video editing, 3D rendering, or scientific computing, the bottleneck calculation primarily focuses on whether your processor is powerful enough to handle these workloads efficiently. Here, a high bottleneck percentage for the CPU would indicate that your processor is the limiting factor, making tasks slower than they could be with a more robust CPU.
GPU intensive tasks bottleneck result
In scenarios involving GPU intensive tasks—like advanced gaming, graphical rendering, or video processing—the bottleneck calculation highlights the efficiency of your graphics card in relation to the overall system. A high bottleneck percentage on the GPU side would suggest that your graphics card is the limiting component, potentially hindering your system's ability to deliver optimal graphical performance.
Bottleneck solutions
Replace processor
If your graphic card is causing the bottleneck but you're considering replacing your processor, reconsider this approach. Unless your processor is already on the verge of becoming outdated, upgrading it might not offer a significant performance boost, particularly in graphics-heavy tasks.
- AMD Athlon II X4 559 Full details
- AMD A8-5500 Full details
- AMD FX-4100 Full details
- AMD A8-5500B Full details
- Intel Core i5-680 Full details
- AMD Athlon X4 750 Full details
- AMD Athlon X4 740 Full details
- AMD Phenom II X4 965 Full details
- AMD Phenom II X4 B60 Full details
- Intel Core i5-760 Full details
- Intel Celeron G5900 Full details
- AMD FX-4130 Full details
- Intel Celeron J4115 Full details
- Intel Core2 Extreme X9770 Full details
- AMD Phenom II X4 B65 Full details
- Intel Pentium G4520 Full details
- Intel Core2 Quad Q9650 Full details
- Intel Celeron G3950 Full details
- Intel Core2 Quad Q9550 Full details
- Intel Pentium G4400T Full details
- AMD Phenom II X4 960T Full details
- AMD Phenom II X4 940 Full details
- AMD Athlon II X4 645 Full details
- Intel Celeron G3920 Full details
- AMD A8-3850 Full details
- AMD Phenom II X4 850 Full details
- AMD Phenom II X4 B50 Full details
- Intel Core i3-3245 Full details
- AMD Phenom II X4 945 Full details
- Intel Core i5-660 Full details
- Intel Pentium G4500T Full details
- AMD Phenom II X4 B95 Full details
- AMD Phenom II X4 840 Full details
- Intel Core2 Extreme X9650 Full details
- Intel Pentium J4205 Full details
- Intel Pentium G3470 Full details
- Intel Core i3-3250 Full details
- Intel Celeron G4900 Full details
- Intel Core i7-4610Y Full details
- Intel Xeon E5-2407 Full details
- Intel Xeon E5607 Full details
- Intel Xeon E5530 Full details
- Intel Xeon X5365 Full details
- Intel Xeon E5-2403 Full details
- Intel Xeon X3363 Full details
- Intel Xeon E5606 Full details
- Intel Xeon E5440 Full details
- Intel Xeon X5450 Full details
- Intel Xeon X3360 Full details
- Intel Atom C3558 Full details
Impact of Changing Screen Resolution
Increasing the resolution in this scenario will only make the bottleneck worse, as the GPU will be under even more stress, leading to lower frame rates and reduced graphical quality. It won't significantly ease the load on the already underutilized processor.
Read moreReplace graphic cards
When the graphic card becomes a system bottleneck, upgrading it can provide a significant boost in performance. Opt for a card that better matches the capabilities of your processor to get a more balanced system. This will also enable you to run games and applications at higher settings, offering a vastly improved user experience.
- AMD Radeon R9 270 Full details
- NVIDIA GeForce GTX 660 Full details
- AMD Radeon RX 460 Full details
- NVIDIA GeForce GTX 480 Full details
- NVIDIA GeForce GTX 750 Ti Full details
- AMD Radeon HD 7850 Full details
- NVIDIA GeForce GTX 570 Full details
- AMD Radeon RX 560 Full details
- AMD Radeon Pro WX 4100 Full details
- AMD Radeon RX Vega M GL Full details
- NVIDIA GeForce GTX 750 Full details
- NVIDIA GeForce GTX 650 Ti BOOST Full details
- NVIDIA GeForce GTX 590 Full details
- NVIDIA GeForce GTX 560 Ti Full details
- AMD Radeon R9 360 Full details
- AMD Radeon HD 7790 Full details
- AMD Radeon R7 360 Full details
- NVIDIA GeForce GTX 470 Full details
- AMD Radeon R7 260X Full details
- AMD Radeon HD 6990 Full details
- AMD Radeon R7 260 Full details
- AMD Radeon HD 6970 Full details
- AMD Radeon RX 550 Full details
- NVIDIA GeForce GTX 560 Full details
- AMD Radeon HD 8950 Full details
- NVIDIA GeForce GTX 465 Full details
- AMD Radeon HD 6950 Full details
- AMD FirePro W7000 Full details
- NVIDIA Quadro M2000 Full details
- NVIDIA Quadro K5000 Full details
- AMD FirePro W8000 Full details
- NVIDIA GRID K520 Full details
- NVIDIA Quadro K2200 Full details
- NVIDIA Quadro P620 Full details
- NVIDIA Quadro P600 Full details
- NVIDIA Quadro K5100M Full details
- NVIDIA Tesla C2070 Full details
- AMD FirePro W7170M Full details
- NVIDIA Quadro K1200 Full details
- AMD FirePro W5000 Full details
- AMD FirePro W5100 Full details
- AMD FirePro M6100 FireGL V Full details
- NVIDIA GRID K280Q Full details
- AMD FirePro W4300 Full details
- NVIDIA Quadro K4100M Full details
- NVIDIA Quadro K5000M Full details
- NVIDIA GRID K2 Full details
- AMD FirePro V9800 Full details
- NVIDIA Quadro K4000 Full details
- NVIDIA Quadro 6000 Full details
Impact of Changing Screen Resolution
If your graphics card is bottlenecking the system, lowering the screen resolution will allow the card to handle data more efficiently, resulting in higher frames per second. However, it's worth noting that lower resolutions will require less data processing from the CPU, which could create a new bottleneck there.
Read moreBottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.