Layers of Fear bottleneck calculator
AMD Athlon 64 3200+ and AMD Radeon RX Vega11
Layers of Fear
1920 × 1200
1 monitor
1. Select game
Currently selected:
Layers of Fear
2. Select processor
Currently selected:
AMD Athlon 64 3200+
3. Select graphic card
Currently selected:
AMD Radeon RX Vega11
4. Select resolution
Currently selected:
1920 × 1200 resolution
(1 monitor)
Calculation result
Bottleneck percentage
The AMD Athlon 64 3200+ may serve as a bottleneck for the AMD Radeon RX Vega11 in the Layers of Fear with 1920 × 1200 and 1 monitor. Although the AMD Radeon RX Vega11 is engineered to manage heavy graphical tasks, the AMD Athlon 64 3200+ might lack the processing power needed to fully unlock the AMD Radeon RX Vega11 capabilities. This imbalance may inhibit the overall efficiency of your system, slowing down processing and possibly compromising graphical fidelity. For a more harmonious hardware setup, upgrading to a high-performing processor that can meet the demands of current software and games is advised.
In a configuration featuring the AMD Athlon 64 3200+ and AMD Radeon RX Vega11, with a screen resolution of 1920 × 1200 and 1 monitor, the system experiences a 34.3% bottleneck for Layers of Fear.
Processor and graphic card utilizations
In a computing setup featuring the AMD Athlon 64 3200+ and AMD Radeon RX Vega11, under the context of Layers of Fear with a screen resolution of 1920 × 1200 and 1 monitor, the processor is expected to have an utilization rate of 82.4%, while the graphics card is projected to be utilized at 49.4%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
In gaming scenarios, your AMD Radeon RX Vega11 might not attain its full performance potential due to a lack of optimal utilization. This happens when the AMD Athlon 64 3200+ fails to handle and transmit data to the AMD Radeon RX Vega11 at an adequate speed. As a result, the AMD Athlon 64 3200+ will be operating at its maximum capacity, while the AMD Radeon RX Vega11 remains underutilized.
When it comes to bottlenecks, a processor bottleneck is generally viewed as more detrimental than a graphics card bottleneck. In cases of a processor bottleneck, the AMD Athlon 64 3200+ capacity reaches its limits, which may adversely affect other applications running concurrently. This situation can result in diminished responsiveness and multi-tasking capabilities.
Moreover, due to the processor bottleneck, the system might not leverage the full performance capabilities of the AMD Radeon RX Vega11. Consequently, there could be restrictions in graphical rendering, frame rates, and the overall gaming experience.
To visualize these bottlenecks, consider examining our heatmap. On this heatmap, the X-axis represents the CPU Score, while the Y-axis denotes the GPU Score. A quick glance at this heatmap can offer invaluable insights into potential bottlenecks within various system configurations.
By correlating your AMD Athlon 64 3200+ CPU Score and AMD Radeon RX Vega11 GPU Score on the heatmap, you can acquire a more comprehensive understanding of how these components interact and where the bottlenecks might occur. Making well-informed hardware choices based on this heatmap analysis can lead to a more balanced and efficient computing setup for your specific needs.
General bottleneck calculations
The bottleneck calculations presented here are geared specifically towards in-game scenarios, providing valuable insights into how your hardware configuration could impact gaming performance. However, it's crucial to understand that bottlenecks can manifest in various types of tasks and applications. Below, you will find bottleneck calculations segmented into three primary categories: General Tasks, CPU Intensive Tasks, and GPU Intensive Tasks. This segmentation allows for a more nuanced understanding of how your system's components interact under different types of workloads.
General tasks bottleneck result
For general tasks that include web browsing, video streaming, office applications, and basic multitasking, the bottleneck result offers a comprehensive look at how well your CPU and GPU are balanced. If the bottleneck percentage leans heavily towards either the CPU or GPU, it might be beneficial to consider an upgrade for the more taxed component to ensure smoother system performance.
CPU intensive tasks bottleneck result
When it comes to CPU intensive tasks, such as video editing, 3D rendering, or scientific computing, the bottleneck calculation primarily focuses on whether your processor is powerful enough to handle these workloads efficiently. Here, a high bottleneck percentage for the CPU would indicate that your processor is the limiting factor, making tasks slower than they could be with a more robust CPU.
GPU intensive tasks bottleneck result
In scenarios involving GPU intensive tasks—like advanced gaming, graphical rendering, or video processing—the bottleneck calculation highlights the efficiency of your graphics card in relation to the overall system. A high bottleneck percentage on the GPU side would suggest that your graphics card is the limiting component, potentially hindering your system's ability to deliver optimal graphical performance.
Bottleneck solutions
Replace processor
When the processor becomes the system's bottleneck, upgrading it is often the most straightforward way to improve performance. Opting for a faster processor with more cores and higher clock speeds can effectively minimize or even eliminate the bottleneck, making it easier for your graphics card to perform to its maximum capability.
- Intel Pentium G2020T Full details
- AMD Phenom II X2 B59 Full details
- Intel Pentium G6960 Full details
- Intel Pentium G850 Full details
- AMD Athlon II X3 415e Full details
- AMD Phenom II X2 565 Full details
- Intel Pentium G840 Full details
- Intel Pentium J2900 Full details
- AMD Phenom 8650 Full details
- Intel Celeron G550 Full details
- Intel Core2 Duo E8500 Full details
- AMD Athlon II X2 265 Full details
- AMD Phenom II X2 511 Full details
- Intel Celeron J3160 Full details
- AMD A4-4020 Full details
- AMD Athlon II X2 B28 Full details
- AMD A6-5400K Full details
- AMD Phenom 9100e Full details
- AMD Athlon II X2 270 Full details
- AMD Phenom II X2 555 Full details
- AMD Athlon X2 340 Full details
- AMD Athlon II X3 400e Full details
- Intel Celeron G1610T Full details
- Intel Pentium G630 Full details
- AMD A4-6300B Full details
- AMD Athlon II X3 405e Full details
- Intel Pentium G640 Full details
- AMD Athlon II X2 280 Full details
- Intel Core i3-4010Y Full details
- AMD A4-5300 Full details
- AMD Phenom II X2 521 Full details
- Intel Core2 Duo E8600 Full details
- AMD Phenom II X2 560 Full details
- Intel Celeron G555 Full details
- AMD Athlon 5150 Full details
- AMD Phenom II X2 570 Full details
- Intel Pentium G645 Full details
- AMD Phenom 9150e Full details
- AMD A6-3500 Full details
- AMD Phenom II X3 740 Full details
- AMD A4-6300 Full details
- Intel Pentium E6500 Full details
- Intel Core2 Extreme X6800 Full details
- AMD Athlon II X2 245 Full details
- Intel Core2 Duo E8200 Full details
- Intel Core2 Duo E6850 Full details
- AMD Athlon II X2 B24 Full details
- Intel Xeon X3210 Full details
- Intel Xeon E3120 Full details
- Intel Xeon W3503 Full details
Impact of Changing Screen Resolution
Interestingly, if you're facing a processor bottleneck, altering the screen resolution may have a counterintuitive impact. Elevating the screen resolution will primarily stress the graphics card, thereby reducing the proportion of work that the processor needs to do in certain tasks. This makes it less likely that the processor will max out, though it does not replace the benefits of a processor upgrade for a balanced system.
Read moreReplace graphic cards
If the processor is causing the bottleneck, replacing the graphic card isn't generally recommended unless you're also planning to upgrade the processor. Downgrading your graphics card to better match the processor might alleviate the bottleneck, but it often results in a decrease in overall system performance, especially in graphics-heavy tasks like gaming or 3D rendering.
- AMD Radeon E6760 Full details
- AMD Radeon R7 PRO A12-9800 Full details
- AMD Radeon HD 7670 Full details
- AMD Radeon R7 A10 PRO-7850B Full details
- AMD Radeon Vega 3 Full details
- AMD Radeon R7 PRO A8-9600 Full details
- AMD Radeon 620 Full details
- AMD Radeon R7 PRO A10-8770 Full details
- AMD Radeon R7 M440 Full details
- AMD Radeon R7 240 Full details
- AMD Radeon R7 PRO A12-8870 Full details
- AMD Radeon HD 4770 Full details
- AMD Radeon R7 A8-8650 Full details
- AMD Radeon R7 A12-9800E Radeon Full details
- AMD Radeon R5 430 Full details
- NVIDIA GeForce GT 730 Full details
- AMD Radeon Athlon Gold 3150U Full details
- AMD Radeon R7 M270 Full details
- AMD Radeon R7 PRO A10-8750B Full details
- AMD Radeon HD 4810 Full details
- NVIDIA GeForce GT 440 Full details
- AMD Radeon R7 M365X Full details
- AMD Radeon R7 A10-7700K Full details
- AMD Radeon R7 A8-7600 Full details
- AMD Radeon 535DX Full details
- AMD Radeon R8 M445DX Full details
- NVIDIA GeForce 9800 GX2 Full details
- AMD Radeon R7 PRO A10-9700 Full details
- AMD Radeon R5 M435 Full details
- AMD Radeon HD 5670 Full details
- AMD Radeon R7 A10 Extreme Edition Full details
- AMD Radeon R7 M260DX Full details
- AMD Radeon R7 A8-7680 Full details
- AMD Radeon R7 A10 PRO-7800B Full details
- AMD Radeon R7 PRO A10-8770E Full details
- AMD Radeon R7 A8-9600 Radeon Full details
- AMD Radeon R7 FX-8800P Full details
- NVIDIA GeForce GT 635 Full details
- AMD Radeon HD 4830 Full details
- AMD Radeon HD 6670 Full details
- AMD Radeon R7 A8-7670K Full details
- AMD Radeon R5 A6-9500 Full details
- AMD Radeon R7 A10-7890K Full details
- AMD Radeon R7 A10-8750 Full details
- AMD FirePro W2100 Full details
- NVIDIA GRID K220Q Full details
- NVIDIA Quadro 2000M Full details
- NVIDIA Quadro K1000M Full details
- NVIDIA Quadro FX 3800 Full details
- AMD FirePro 3D V4800 Full details
Impact of Changing Screen Resolution
Increasing the screen resolution in this case will demand more from your graphics card and can make the processor's bottleneck less noticeable in some scenarios, but again, it won't entirely solve the underlying problem.
Read moreBottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.