Riders of Icarus bottleneck calculator
Intel Celeron M 410 and NVIDIA GeForce GT 525M
Riders of Icarus
2560 × 1440
1 monitor
1. Select game
Currently selected:
Riders of Icarus
2. Select processor
Currently selected:
Intel Celeron M 410
3. Select graphic card
Currently selected:
NVIDIA GeForce GT 525M
4. Select resolution
Currently selected:
2560 × 1440 resolution
(1 monitor)
Calculation result
Bottleneck percentage
The Intel Celeron M 410 may serve as a bottleneck for the NVIDIA GeForce GT 525M in the Riders of Icarus with 2560 × 1440 and 1 monitor. Although the NVIDIA GeForce GT 525M is engineered to manage heavy graphical tasks, the Intel Celeron M 410 might lack the processing power needed to fully unlock the NVIDIA GeForce GT 525M capabilities. This imbalance may inhibit the overall efficiency of your system, slowing down processing and possibly compromising graphical fidelity. For a more harmonious hardware setup, upgrading to a high-performing processor that can meet the demands of current software and games is advised.
In a configuration featuring the Intel Celeron M 410 and NVIDIA GeForce GT 525M, with a screen resolution of 2560 × 1440 and 1 monitor, the system experiences a 0.7% bottleneck for Riders of Icarus.
Processor and graphic card utilizations
In a computing setup featuring the Intel Celeron M 410 and NVIDIA GeForce GT 525M, under the context of Riders of Icarus with a screen resolution of 2560 × 1440 and 1 monitor, the processor is expected to have an utilization rate of 78%, while the graphics card is projected to be utilized at 74.1%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
In gaming scenarios, your NVIDIA GeForce GT 525M might not attain its full performance potential due to a lack of optimal utilization. This happens when the Intel Celeron M 410 fails to handle and transmit data to the NVIDIA GeForce GT 525M at an adequate speed. As a result, the Intel Celeron M 410 will be operating at its maximum capacity, while the NVIDIA GeForce GT 525M remains underutilized.
When it comes to bottlenecks, a processor bottleneck is generally viewed as more detrimental than a graphics card bottleneck. In cases of a processor bottleneck, the Intel Celeron M 410 capacity reaches its limits, which may adversely affect other applications running concurrently. This situation can result in diminished responsiveness and multi-tasking capabilities.
Moreover, due to the processor bottleneck, the system might not leverage the full performance capabilities of the NVIDIA GeForce GT 525M. Consequently, there could be restrictions in graphical rendering, frame rates, and the overall gaming experience.
To visualize these bottlenecks, consider examining our heatmap. On this heatmap, the X-axis represents the CPU Score, while the Y-axis denotes the GPU Score. A quick glance at this heatmap can offer invaluable insights into potential bottlenecks within various system configurations.
By correlating your Intel Celeron M 410 CPU Score and NVIDIA GeForce GT 525M GPU Score on the heatmap, you can acquire a more comprehensive understanding of how these components interact and where the bottlenecks might occur. Making well-informed hardware choices based on this heatmap analysis can lead to a more balanced and efficient computing setup for your specific needs.
General bottleneck calculations
The bottleneck calculations presented here are geared specifically towards in-game scenarios, providing valuable insights into how your hardware configuration could impact gaming performance. However, it's crucial to understand that bottlenecks can manifest in various types of tasks and applications. Below, you will find bottleneck calculations segmented into three primary categories: General Tasks, CPU Intensive Tasks, and GPU Intensive Tasks. This segmentation allows for a more nuanced understanding of how your system's components interact under different types of workloads.
General tasks bottleneck result
For general tasks that include web browsing, video streaming, office applications, and basic multitasking, the bottleneck result offers a comprehensive look at how well your CPU and GPU are balanced. If the bottleneck percentage leans heavily towards either the CPU or GPU, it might be beneficial to consider an upgrade for the more taxed component to ensure smoother system performance.
CPU intensive tasks bottleneck result
When it comes to CPU intensive tasks, such as video editing, 3D rendering, or scientific computing, the bottleneck calculation primarily focuses on whether your processor is powerful enough to handle these workloads efficiently. Here, a high bottleneck percentage for the CPU would indicate that your processor is the limiting factor, making tasks slower than they could be with a more robust CPU.
GPU intensive tasks bottleneck result
In scenarios involving GPU intensive tasks—like advanced gaming, graphical rendering, or video processing—the bottleneck calculation highlights the efficiency of your graphics card in relation to the overall system. A high bottleneck percentage on the GPU side would suggest that your graphics card is the limiting component, potentially hindering your system's ability to deliver optimal graphical performance.
Bottleneck solutions
Replace processor
When the processor becomes the system's bottleneck, upgrading it is often the most straightforward way to improve performance. Opting for a faster processor with more cores and higher clock speeds can effectively minimize or even eliminate the bottleneck, making it easier for your graphics card to perform to its maximum capability.
- Intel Celeron M 530 Full details
- Intel Celeron M Full details
- Intel Core2 Solo U3500 Full details
- AMD Mobile Sempron 3500+ Full details
- Intel Pentium M Full details
- AMD C-50 Full details
- Intel Celeron 530 Full details
- AMD Mobile Sempron 3000+ Full details
- AMD Mobile Sempron 3400+ Full details
- Intel Pentium M Full details
- Intel Celeron 743 Full details
- AMD Turion 64 Mobile ML-30 Full details
- AMD Mobile Sempron 3100+ Full details
- Intel Pentium M Full details
- Intel Atom N550 Full details
- AMD Mobile Sempron 3600+ Full details
- AMD Turion 64 Mobile ML-32 Full details
- AMD Sempron SI-40 Full details
- AMD Mobile Sempron 3300+ Full details
- Intel Atom Z2760 Full details
- Intel Atom N450 Full details
- Intel Celeron M Full details
- Intel Core Solo T1300 Full details
- Intel Celeron 723 Full details
- Intel Pentium M Full details
- Intel Pentium M Full details
- Intel Celeron M 360 Full details
- Intel Pentium M Full details
- Intel Core Duo U2500 Full details
- Intel Pentium M Full details
- Intel Pentium SU2700 Full details
- Intel Pentium M Full details
- AMD Mobile Sempron 2800+ Full details
- Intel Celeron M 520 Full details
- AMD Sempron SI-42 Full details
- AMD Sempron M120 Full details
- Intel Celeron M 430 Full details
- Intel Celeron M 440 Full details
- Intel Pentium M Full details
- Intel Celeron M Full details
- Intel Atom N455 Full details
- Intel Pentium M Full details
- Intel Core Solo T1350 Full details
- AMD E-240 Full details
- Intel Celeron M Full details
- Intel Atom N270 Full details
- Intel Celeron M 420 Full details
- Intel Atom N280 Full details
- Intel Celeron M Full details
- Intel Atom Z520 Full details
Impact of Changing Screen Resolution
Interestingly, if you're facing a processor bottleneck, altering the screen resolution may have a counterintuitive impact. Elevating the screen resolution will primarily stress the graphics card, thereby reducing the proportion of work that the processor needs to do in certain tasks. This makes it less likely that the processor will max out, though it does not replace the benefits of a processor upgrade for a balanced system.
Read moreReplace graphic cards
If the processor is causing the bottleneck, replacing the graphic card isn't generally recommended unless you're also planning to upgrade the processor. Downgrading your graphics card to better match the processor might alleviate the bottleneck, but it often results in a decrease in overall system performance, especially in graphics-heavy tasks like gaming or 3D rendering.
- NVIDIA GeForce 820M Full details
- AMD Mobility Radeon HD 3870 X2 Full details
- NVIDIA GeForce GT 540M Full details
- NVIDIA GeForce GT 625M Full details
- AMD Radeon R7 M260 Full details
- AMD Mobility Radeon HD 5730 Full details
- AMD Radeon HD 8670M Full details
- AMD Radeon 6600M Full details
- NVIDIA GeForce GT 435M Full details
- AMD Mobility Radeon HD 5570 Full details
- NVIDIA GeForce GT 425M Full details
- AMD Radeon R5 M255 Full details
- NVIDIA GeForce GT 630M Full details
- NVIDIA GeForce 615 Full details
- AMD Mobility Radeon HD 4650 Full details
- NVIDIA GeForce GT 420M Full details
- NVIDIA GeForce GTS 350M Full details
- NVIDIA GeForce 810M Full details
- AMD Radeon R5 M230 Full details
- NVIDIA GeForce GT 620M Full details
- AMD Radeon HD 8570M Full details
- NVIDIA GeForce GT 710M Full details
- AMD Mobility Radeon HD 5650 Full details
- NVIDIA GeForce 9800M GTX Full details
- NVIDIA GeForce 705M Full details
- NVIDIA GeForce GT625M Full details
- NVIDIA GeForce 800M Full details
- NVIDIA GeForce 710M Full details
- NVIDIA GeForce GT 720M Full details
- NVIDIA GeForce 8800M GTX Full details
- AMD Mobility Radeon HD 4670 Full details
- AMD Radeon HD 6620G Full details
- AMD Mobility Radeon HD 565v Full details
- NVIDIA GeForce 9800M GTS Full details
- AMD Radeon HD 6490M Full details
- NVIDIA GeForce GTX 260M Full details
- NVIDIA GeForce 9800M GT Full details
- NVIDIA GeForce 8800M GTS Full details
- NVIDIA GeForce GT 335M Full details
- NVIDIA GeForce GT 230 Full details
- AMD Mobility Radeon HD 560v Full details
- AMD Radeon HD 8350G Full details
- AMD Radeon HD 6520G Full details
- NVIDIA GeForce 610M Full details
- NVIDIA GeForce GT 415M Full details
- AMD Mobility Radeon HD 5165 Full details
- NVIDIA GeForce GT 520M Full details
- NVIDIA GeForce GT 520MX Full details
- NVIDIA GeForce 9700M GTS Full details
- AMD Radeon HD 6370M Full details
Impact of Changing Screen Resolution
Increasing the screen resolution in this case will demand more from your graphics card and can make the processor's bottleneck less noticeable in some scenarios, but again, it won't entirely solve the underlying problem.
Read moreBottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.