Enter the Gungeon bottleneck calculator
Intel Core i7-13620H and NVIDIA GeForce MX570
Enter the Gungeon
800 × 600
1 monitor
1. Select game
Currently selected:
Enter the Gungeon
2. Select processor
Currently selected:
Intel Core i7-13620H
3. Select graphic card
Currently selected:
NVIDIA GeForce MX570
4. Select resolution
Currently selected:
800 × 600 resolution
(1 monitor)
Calculation result
Bottleneck percentage
In a system configuration featuring the Intel Core i7-13620H and NVIDIA GeForce MX570, the NVIDIA GeForce MX570 could potentially act as a bottleneck to the Intel Core i7-13620H performance in the Enter the Gungeon with 800 × 600 and 1 monitor. While the Intel Core i7-13620H is well-equipped to manage strenuous computational tasks, the NVIDIA GeForce MX570 limited graphical prowess may compromise the overall system efficiency. This disparity could lead to decreased performance and less effective utilization of system resources. To rectify this imbalance, an upgrade to a more capable graphics card that complements the Intel Core i7-13620H processing abilities is advisable.
With a screen resolution of 800 × 600 and 1 monitor, this configuration demonstrates a 6.6% graphics card bottleneck when performing Enter the Gungeon.
Processor and graphic card utilizations
In a computing setup featuring the Intel Core i7-13620H and NVIDIA GeForce MX570, under the context of Enter the Gungeon with a screen resolution of 800 × 600 and 1 monitor, the processor is expected to have an utilization rate of 70.3%, while the graphics card is projected to be utilized at 83.3%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
During gameplay scenarios, your Intel Core i7-13620H might not operate at its full potential due to the constraints imposed by the NVIDIA GeForce MX570. In such cases, the NVIDIA GeForce MX570 may struggle to swiftly process and relay data, resulting in underutilization of the Intel Core i7-13620H. Therefore, the NVIDIA GeForce MX570 will be operating at its maximum capacity, leaving the Intel Core i7-13620H capabilities untapped.
In the hierarchy of bottlenecks, a graphics card bottleneck is often considered less severe than a processor bottleneck. When a graphics card bottleneck occurs, the NVIDIA GeForce MX570 operates at its uppermost limits, thereby allowing you to extract the best performance possible from the card. This ensures that you benefit from the full scope of the NVIDIA GeForce MX570 features.
One distinct advantage of not maxing out the Intel Core i7-13620H is the enhanced ability to efficiently manage other background tasks. As the Intel Core i7-13620H is not operating at full capacity while gaming, it can allocate computational resources to other ongoing activities like background processes or multitasking, without any performance trade-offs. This contributes to a smoother and more flexible overall system operation.
To gain a deeper understanding of these potential bottlenecks, consider referring to our heatmap. On the heatmap, the X-axis depicts the CPU Score, and the Y-axis signifies the GPU Score. This visualization can help identify the relationship between various CPUs and GPUs, giving you valuable insights into how to better balance your system.
By matching your Intel Core i7-13620H CPU Score with the NVIDIA GeForce MX570 GPU Score on the heatmap, you can more accurately assess how these components interact and pinpoint where bottlenecks may occur. Utilizing this heatmap analysis can guide you in making informed hardware decisions that lead to a more balanced and effective computing setup tailored to your specific needs.
General bottleneck calculations
The bottleneck calculations presented here are geared specifically towards in-game scenarios, providing valuable insights into how your hardware configuration could impact gaming performance. However, it's crucial to understand that bottlenecks can manifest in various types of tasks and applications. Below, you will find bottleneck calculations segmented into three primary categories: General Tasks, CPU Intensive Tasks, and GPU Intensive Tasks. This segmentation allows for a more nuanced understanding of how your system's components interact under different types of workloads.
General tasks bottleneck result
For general tasks that include web browsing, video streaming, office applications, and basic multitasking, the bottleneck result offers a comprehensive look at how well your CPU and GPU are balanced. If the bottleneck percentage leans heavily towards either the CPU or GPU, it might be beneficial to consider an upgrade for the more taxed component to ensure smoother system performance.
CPU intensive tasks bottleneck result
When it comes to CPU intensive tasks, such as video editing, 3D rendering, or scientific computing, the bottleneck calculation primarily focuses on whether your processor is powerful enough to handle these workloads efficiently. Here, a high bottleneck percentage for the CPU would indicate that your processor is the limiting factor, making tasks slower than they could be with a more robust CPU.
GPU intensive tasks bottleneck result
In scenarios involving GPU intensive tasks—like advanced gaming, graphical rendering, or video processing—the bottleneck calculation highlights the efficiency of your graphics card in relation to the overall system. A high bottleneck percentage on the GPU side would suggest that your graphics card is the limiting component, potentially hindering your system's ability to deliver optimal graphical performance.
Bottleneck solutions
Replace processor
If your graphic card is causing the bottleneck but you're considering replacing your processor, reconsider this approach. Unless your processor is already on the verge of becoming outdated, upgrading it might not offer a significant performance boost, particularly in graphics-heavy tasks.
- Intel Core i7-11800H Full details
- AMD Ryzen 7 5800HS Full details
- Intel Core i5-1250P Full details
- Intel Core i7-1370P Full details
- Intel Core i7-1280P Full details
- Intel Core i7-11850H Full details
- AMD Ryzen 7 6800U Full details
- Intel Core i9-11900H Full details
- AMD Ryzen 7 Pro 7735U Full details
- AMD Ryzen 7 PRO 6860Z Full details
- AMD Ryzen 7 PRO 6850U Full details
- Intel Core i5-13420H Full details
- AMD Ryzen 5 6600H Full details
- Intel Core i7-1360P Full details
- Intel Core i5-1340P Full details
- AMD Ryzen 9 4900HS Full details
- AMD Ryzen 9 4900H Full details
- Intel Core i5-1350P Full details
- AMD Ryzen 7 PRO 7730U Full details
- AMD Ryzen 5 7540U Full details
- AMD Ryzen 5 7535HS Full details
- Intel Core i5-12450HX Full details
- AMD Ryzen 7 4800H Full details
- Intel Core Ultra 7 165U Full details
- Intel Core Ultra 5 125U Full details
- Intel Core Ultra 5 135U Full details
- AMD Ryzen 5 PRO 7540U Full details
- AMD Ryzen 7 5825U Full details
- AMD Ryzen 5 6600HS Creator Edition Full details
- AMD Ryzen 7 4800HS Full details
- AMD Ryzen 7 5800U Full details
- AMD Ryzen 7 7730U Full details
- Intel Core i5-12450H Full details
- AMD Ryzen 5 5600H Full details
- Intel Core Ultra 7 155U Full details
- Intel Core i7-11600H Full details
- AMD Ryzen 7 4800U Full details
- AMD Ryzen 5 PRO 6650U Full details
- AMD Ryzen 5 6600U Full details
- AMD Ryzen 5 Pro 7535U Full details
- AMD Ryzen 7 Extreme Edition Full details
- AMD Ryzen 7 PRO 5850U Full details
- Intel Core i7-1260P Full details
- Intel Core i5-1240P Full details
- Intel Core i7-1270P Full details
- Intel Core i5-11400H Full details
- AMD Ryzen 5 7430U Full details
- AMD Ryzen 7 PRO 4750U Full details
- Intel Core i5-1345U Full details
- AMD Ryzen 5 5600U Full details
Impact of Changing Screen Resolution
Increasing the resolution in this scenario will only make the bottleneck worse, as the GPU will be under even more stress, leading to lower frame rates and reduced graphical quality. It won't significantly ease the load on the already underutilized processor.
Read moreReplace graphic cards
When the graphic card becomes a system bottleneck, upgrading it can provide a significant boost in performance. Opt for a card that better matches the capabilities of your processor to get a more balanced system. This will also enable you to run games and applications at higher settings, offering a vastly improved user experience.
- NVIDIA Quadro P5200 Full details
- Intel Arc A770M Full details
- NVIDIA GeForce RTX 2070 (Max-Q Design) Full details
- NVIDIA GeForce RTX 2060 Full details
- AMD Radeon RX 7600M XT Full details
- NVIDIA GeForce GTX 1080 (Max-Q Design) Full details
- NVIDIA Quadro RTX 3000 Full details
- NVIDIA RTX A2000 Full details
- NVIDIA GeForce GTX 1070 Full details
- NVIDIA GeForce RTX 3050 Ti Full details
- NVIDIA GeForce GTX 1660 Ti Full details
- NVIDIA GeForce RTX 2060 (Max-Q Design) Full details
- NVIDIA RTX A1000 Full details
- NVIDIA GeForce GTX 1070 (Max-Q Design) Full details
- AMD Radeon Pro 5600M Full details
- AMD Radeon RX 6550M Full details
- NVIDIA GeForce GTX 1660 Ti (Max-Q Design) Full details
- AMD Radeon RX 5600M Full details
- NVIDIA GeForce RTX 3050 Full details
- NVIDIA Quadro RTX 3000 (Max-Q Design) Full details
- AMD Radeon RX 6500M Full details
- NVIDIA GeForce GTX 1060 (Max-Q Design) Full details
- NVIDIA GeForce GTX 1060 Full details
- NVIDIA GeForce RTX 2050 Full details
- NVIDIA GeForce GTX 1650 Ti Full details
- NVIDIA Quadro T2000 Full details
- NVIDIA GeForce GTX 980M Full details
- NVIDIA GeForce GTX 1650 Full details
- AMD Radeon Pro 5500M Full details
- NVIDIA Quadro T2000 (Max-Q Design) Full details
- NVIDIA Quadro M5000M Full details
- AMD Radeon 780M Full details
- NVIDIA Quadro T1000 Full details
- NVIDIA Quadro P3000 Full details
- NVIDIA Quadro T1000 (Max-Q Design) Full details
- NVIDIA RTX A500 Full details
- NVIDIA GeForce GTX 1650 Ti (Max-Q Design) Full details
- NVIDIA Quadro M4000M Full details
- NVIDIA GeForce GTX 1050 Ti Full details
- NVIDIA GeForce GTX 1650 (Max-Q Design) Full details
- AMD Radeon Pro 5300M Full details
- NVIDIA GeForce MX570 A Full details
- AMD Radeon 760M Full details
- NVIDIA GeForce GTX 970M Full details
- NVIDIA Quadro M3000M Full details
- AMD Radeon RX 5500M Full details
- NVIDIA GeForce GTX 1050 Ti (Max-Q Design) Full details
- AMD Radeon R9 M395X Full details
- AMD Radeon R9 M295X Full details
- AMD Radeon R9 M395 Full details
Impact of Changing Screen Resolution
If your graphics card is bottlenecking the system, lowering the screen resolution will allow the card to handle data more efficiently, resulting in higher frames per second. However, it's worth noting that lower resolutions will require less data processing from the CPU, which could create a new bottleneck there.
Read moreBottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.