Enter the Gungeon bottleneck calculator
Intel Core i7-2860QM and NVIDIA GeForce 945M
Enter the Gungeon
800 × 600
1 monitor
1. Select game
Currently selected:
Enter the Gungeon
2. Select processor
Currently selected:
Intel Core i7-2860QM
3. Select graphic card
Currently selected:
NVIDIA GeForce 945M
4. Select resolution
Currently selected:
800 × 600 resolution
(1 monitor)
Calculation result
Bottleneck percentage
In a system configuration featuring the Intel Core i7-2860QM and NVIDIA GeForce 945M, the NVIDIA GeForce 945M could potentially act as a bottleneck to the Intel Core i7-2860QM performance in the Enter the Gungeon with 800 × 600 and 1 monitor. While the Intel Core i7-2860QM is well-equipped to manage strenuous computational tasks, the NVIDIA GeForce 945M limited graphical prowess may compromise the overall system efficiency. This disparity could lead to decreased performance and less effective utilization of system resources. To rectify this imbalance, an upgrade to a more capable graphics card that complements the Intel Core i7-2860QM processing abilities is advisable.
With a screen resolution of 800 × 600 and 1 monitor, this configuration demonstrates a 3.5% graphics card bottleneck when performing Enter the Gungeon.
Processor and graphic card utilizations
In a computing setup featuring the Intel Core i7-2860QM and NVIDIA GeForce 945M, under the context of Enter the Gungeon with a screen resolution of 800 × 600 and 1 monitor, the processor is expected to have an utilization rate of 72.7%, while the graphics card is projected to be utilized at 83.3%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
During gameplay scenarios, your Intel Core i7-2860QM might not operate at its full potential due to the constraints imposed by the NVIDIA GeForce 945M. In such cases, the NVIDIA GeForce 945M may struggle to swiftly process and relay data, resulting in underutilization of the Intel Core i7-2860QM. Therefore, the NVIDIA GeForce 945M will be operating at its maximum capacity, leaving the Intel Core i7-2860QM capabilities untapped.
In the hierarchy of bottlenecks, a graphics card bottleneck is often considered less severe than a processor bottleneck. When a graphics card bottleneck occurs, the NVIDIA GeForce 945M operates at its uppermost limits, thereby allowing you to extract the best performance possible from the card. This ensures that you benefit from the full scope of the NVIDIA GeForce 945M features.
One distinct advantage of not maxing out the Intel Core i7-2860QM is the enhanced ability to efficiently manage other background tasks. As the Intel Core i7-2860QM is not operating at full capacity while gaming, it can allocate computational resources to other ongoing activities like background processes or multitasking, without any performance trade-offs. This contributes to a smoother and more flexible overall system operation.
To gain a deeper understanding of these potential bottlenecks, consider referring to our heatmap. On the heatmap, the X-axis depicts the CPU Score, and the Y-axis signifies the GPU Score. This visualization can help identify the relationship between various CPUs and GPUs, giving you valuable insights into how to better balance your system.
By matching your Intel Core i7-2860QM CPU Score with the NVIDIA GeForce 945M GPU Score on the heatmap, you can more accurately assess how these components interact and pinpoint where bottlenecks may occur. Utilizing this heatmap analysis can guide you in making informed hardware decisions that lead to a more balanced and effective computing setup tailored to your specific needs.
General bottleneck calculations
The bottleneck calculations presented here are geared specifically towards in-game scenarios, providing valuable insights into how your hardware configuration could impact gaming performance. However, it's crucial to understand that bottlenecks can manifest in various types of tasks and applications. Below, you will find bottleneck calculations segmented into three primary categories: General Tasks, CPU Intensive Tasks, and GPU Intensive Tasks. This segmentation allows for a more nuanced understanding of how your system's components interact under different types of workloads.
General tasks bottleneck result
For general tasks that include web browsing, video streaming, office applications, and basic multitasking, the bottleneck result offers a comprehensive look at how well your CPU and GPU are balanced. If the bottleneck percentage leans heavily towards either the CPU or GPU, it might be beneficial to consider an upgrade for the more taxed component to ensure smoother system performance.
CPU intensive tasks bottleneck result
When it comes to CPU intensive tasks, such as video editing, 3D rendering, or scientific computing, the bottleneck calculation primarily focuses on whether your processor is powerful enough to handle these workloads efficiently. Here, a high bottleneck percentage for the CPU would indicate that your processor is the limiting factor, making tasks slower than they could be with a more robust CPU.
GPU intensive tasks bottleneck result
In scenarios involving GPU intensive tasks—like advanced gaming, graphical rendering, or video processing—the bottleneck calculation highlights the efficiency of your graphics card in relation to the overall system. A high bottleneck percentage on the GPU side would suggest that your graphics card is the limiting component, potentially hindering your system's ability to deliver optimal graphical performance.
Bottleneck solutions
Replace processor
If your graphic card is causing the bottleneck but you're considering replacing your processor, reconsider this approach. Unless your processor is already on the verge of becoming outdated, upgrading it might not offer a significant performance boost, particularly in graphics-heavy tasks.
- Intel Core i5-7260U Full details
- AMD Athlon Gold 3150U Full details
- Intel Core i7-2720QM Full details
- Intel Core i7-2710QE Full details
- Intel Core i7-7660U Full details
- Intel Core i3-8145UE Full details
- Intel Core i7-7567U Full details
- Intel Core i3-1000NG4 Full details
- Intel Core i7-6650U Full details
- Intel Core i5-7267U Full details
- Intel Core i7-7500U Full details
- Intel Core i5-7300U Full details
- AMD Ryzen 3 2200U Full details
- Intel Core i7-7600U Full details
- Intel Core i7-2670QM Full details
- Intel Core i5-7287U Full details
- Intel Core i7-6567U Full details
- Intel Core i7-7560U Full details
- Intel Core i3-8145U Full details
- AMD Ryzen 3 3200U Full details
- Intel Core i5-6287U Full details
- Intel Core i7-2675QM Full details
- AMD Ryzen 3 3250U Full details
- Intel Core i5-7360U Full details
- Intel Core i3-10110U Full details
- AMD Athlon 300U Full details
- AMD A8-7680 Full details
- Intel Core i5-6300U Full details
- Intel Core i7-6500U Full details
- AMD FX-9830P Full details
- Intel Celeron N5100 Full details
- Intel Core i7-6560U Full details
- Intel Core i7-2635QM Full details
- Intel Core i5-4340M Full details
- Intel Core i5-7200U Full details
- Intel Core i5-6267U Full details
- Intel Core i3-7100H Full details
- Intel Core i7-6600U Full details
- Intel Core i5-L16G7 Full details
- Intel Core i7-6498DU Full details
- Intel Core i7-2630QM Full details
- Intel Core i3-8130U Full details
- Intel Core i7-6660U Full details
- Intel Core i5-3380M Full details
- AMD A10-9630P Full details
- Intel Core i5-4308U Full details
- AMD Athlon Silver 3050e Full details
- AMD A12-9730P Full details
- Intel Core i5-4300M Full details
- Intel Core i7-3540M Full details
Impact of Changing Screen Resolution
Increasing the resolution in this scenario will only make the bottleneck worse, as the GPU will be under even more stress, leading to lower frame rates and reduced graphical quality. It won't significantly ease the load on the already underutilized processor.
Read moreReplace graphic cards
When the graphic card becomes a system bottleneck, upgrading it can provide a significant boost in performance. Opt for a card that better matches the capabilities of your processor to get a more balanced system. This will also enable you to run games and applications at higher settings, offering a vastly improved user experience.
- NVIDIA GeForce MX450 Full details
- NVIDIA GeForce GTX 965M Full details
- NVIDIA GeForce GTX 880M Full details
- NVIDIA GeForce GTX 780M Full details
- AMD Radeon HD 8970M Full details
- AMD Radeon 740M Full details
- AMD Radeon HD 7970M Full details
- NVIDIA GeForce GTX 775M Full details
- AMD Radeon R9 M390X Full details
- AMD Radeon HD8970M Full details
- NVIDIA GeForce GTX 960M Full details
- NVIDIA GeForce GTX 870M Full details
- NVIDIA Quadro M2000M Full details
- NVIDIA GeForce GTX 860M Full details
- NVIDIA GeForce GTX 960A Full details
- NVIDIA GeForce GTX 680M Full details
- NVIDIA Quadro M1200 Full details
- AMD Radeon R9 M470X Full details
- NVIDIA Quadro M1000M Full details
- NVIDIA GeForce GTX 675MX Full details
- AMD Radeon R9 M380 Full details
- NVIDIA Quadro M620 Full details
- NVIDIA GeForce GTX 770M Full details
- NVIDIA GeForce MX350 Full details
- NVIDIA GeForce MX330 Full details
- NVIDIA GeForce MX250 Full details
- AMD Radeon Pro WX 3200 Full details
- NVIDIA GeForce GTX 850M Full details
- NVIDIA GeForce GTX 950A Full details
- NVIDIA GeForce GTX 950M Full details
- AMD Radeon Pro WX 4150 Full details
- AMD Radeon R9 M290X Full details
- NVIDIA GeForce MX150 Full details
- NVIDIA GeForce GTX 485M Full details
- NVIDIA Quadro M600M Full details
- NVIDIA GeForce GTX 580M Full details
- NVIDIA GeForce GTX 765M Full details
- AMD Radeon Pro WX 4130 Full details
- NVIDIA GeForce GTX 670MX Full details
- NVIDIA GeForce GTX 675M Full details
- NVIDIA Quadro M520 Full details
- NVIDIA GeForce GTX 570M Full details
- NVIDIA GeForce MX130 Full details
- NVIDIA GeForce MX230 Full details
- AMD Radeon Pro WX 2100 Full details
- AMD Firepro W5170M Full details
- NVIDIA GeForce GTX 670M Full details
- AMD Radeon R9 M375X Full details
- NVIDIA GeForce GTX 760M Full details
- AMD FirePro M6000 Mobility Pro Full details
Impact of Changing Screen Resolution
If your graphics card is bottlenecking the system, lowering the screen resolution will allow the card to handle data more efficiently, resulting in higher frames per second. However, it's worth noting that lower resolutions will require less data processing from the CPU, which could create a new bottleneck there.
Read moreBottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.