Enter the Gungeon bottleneck calculator
AMD E-240 and NVIDIA GeForce GT 415M
Enter the Gungeon
1280 × 720
1 monitor
1. Select game
Currently selected:
Enter the Gungeon
2. Select processor
Currently selected:
AMD E-240
3. Select graphic card
Currently selected:
NVIDIA GeForce GT 415M
4. Select resolution
Currently selected:
1280 × 720 resolution
(1 monitor)
Calculation result
Bottleneck percentage
The AMD E-240 may serve as a bottleneck for the NVIDIA GeForce GT 415M in the Enter the Gungeon with 1280 × 720 and 1 monitor. Although the NVIDIA GeForce GT 415M is engineered to manage heavy graphical tasks, the AMD E-240 might lack the processing power needed to fully unlock the NVIDIA GeForce GT 415M capabilities. This imbalance may inhibit the overall efficiency of your system, slowing down processing and possibly compromising graphical fidelity. For a more harmonious hardware setup, upgrading to a high-performing processor that can meet the demands of current software and games is advised.
In a configuration featuring the AMD E-240 and NVIDIA GeForce GT 415M, with a screen resolution of 1280 × 720 and 1 monitor, the system experiences a 2.9% bottleneck for Enter the Gungeon.
Processor and graphic card utilizations
In a computing setup featuring the AMD E-240 and NVIDIA GeForce GT 415M, under the context of Enter the Gungeon with a screen resolution of 1280 × 720 and 1 monitor, the processor is expected to have an utilization rate of 72.9%, while the graphics card is projected to be utilized at 72.5%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
In gaming scenarios, your NVIDIA GeForce GT 415M might not attain its full performance potential due to a lack of optimal utilization. This happens when the AMD E-240 fails to handle and transmit data to the NVIDIA GeForce GT 415M at an adequate speed. As a result, the AMD E-240 will be operating at its maximum capacity, while the NVIDIA GeForce GT 415M remains underutilized.
When it comes to bottlenecks, a processor bottleneck is generally viewed as more detrimental than a graphics card bottleneck. In cases of a processor bottleneck, the AMD E-240 capacity reaches its limits, which may adversely affect other applications running concurrently. This situation can result in diminished responsiveness and multi-tasking capabilities.
Moreover, due to the processor bottleneck, the system might not leverage the full performance capabilities of the NVIDIA GeForce GT 415M. Consequently, there could be restrictions in graphical rendering, frame rates, and the overall gaming experience.
To visualize these bottlenecks, consider examining our heatmap. On this heatmap, the X-axis represents the CPU Score, while the Y-axis denotes the GPU Score. A quick glance at this heatmap can offer invaluable insights into potential bottlenecks within various system configurations.
By correlating your AMD E-240 CPU Score and NVIDIA GeForce GT 415M GPU Score on the heatmap, you can acquire a more comprehensive understanding of how these components interact and where the bottlenecks might occur. Making well-informed hardware choices based on this heatmap analysis can lead to a more balanced and efficient computing setup for your specific needs.
General bottleneck calculations
The bottleneck calculations presented here are geared specifically towards in-game scenarios, providing valuable insights into how your hardware configuration could impact gaming performance. However, it's crucial to understand that bottlenecks can manifest in various types of tasks and applications. Below, you will find bottleneck calculations segmented into three primary categories: General Tasks, CPU Intensive Tasks, and GPU Intensive Tasks. This segmentation allows for a more nuanced understanding of how your system's components interact under different types of workloads.
General tasks bottleneck result
For general tasks that include web browsing, video streaming, office applications, and basic multitasking, the bottleneck result offers a comprehensive look at how well your CPU and GPU are balanced. If the bottleneck percentage leans heavily towards either the CPU or GPU, it might be beneficial to consider an upgrade for the more taxed component to ensure smoother system performance.
CPU intensive tasks bottleneck result
When it comes to CPU intensive tasks, such as video editing, 3D rendering, or scientific computing, the bottleneck calculation primarily focuses on whether your processor is powerful enough to handle these workloads efficiently. Here, a high bottleneck percentage for the CPU would indicate that your processor is the limiting factor, making tasks slower than they could be with a more robust CPU.
GPU intensive tasks bottleneck result
In scenarios involving GPU intensive tasks—like advanced gaming, graphical rendering, or video processing—the bottleneck calculation highlights the efficiency of your graphics card in relation to the overall system. A high bottleneck percentage on the GPU side would suggest that your graphics card is the limiting component, potentially hindering your system's ability to deliver optimal graphical performance.
Bottleneck solutions
Replace processor
When the processor becomes the system's bottleneck, upgrading it is often the most straightforward way to improve performance. Opting for a faster processor with more cores and higher clock speeds can effectively minimize or even eliminate the bottleneck, making it easier for your graphics card to perform to its maximum capability.
- Intel Celeron M 530 Full details
- Intel Celeron 540 Full details
- AMD Athlon X2 L310 Full details
- AMD Athlon II Neo K125 Full details
- Intel Celeron M Full details
- Intel Core2 Solo U3500 Full details
- AMD Mobile Sempron 3500+ Full details
- Intel Pentium M Full details
- AMD C-50 Full details
- Intel Celeron 530 Full details
- AMD Mobile Sempron 3000+ Full details
- AMD Mobile Sempron 3400+ Full details
- Intel Pentium M Full details
- Intel Celeron 743 Full details
- AMD Turion 64 Mobile ML-30 Full details
- AMD Mobile Sempron 3100+ Full details
- AMD Mobile Sempron 3600+ Full details
- Intel Pentium M Full details
- Intel Atom N550 Full details
- AMD Turion 64 Mobile ML-32 Full details
- AMD Sempron SI-40 Full details
- AMD Mobile Sempron 3300+ Full details
- Intel Atom Z2760 Full details
- Intel Celeron M 360 Full details
- Intel Pentium M Full details
- Intel Core Duo U2500 Full details
- Intel Pentium M Full details
- Intel Pentium SU2700 Full details
- Intel Pentium M Full details
- AMD Mobile Sempron 2800+ Full details
- Intel Celeron M 520 Full details
- AMD Sempron SI-42 Full details
- AMD Sempron M120 Full details
- Intel Pentium M Full details
- Intel Pentium M Full details
- Intel Celeron 723 Full details
- Intel Core Solo T1300 Full details
- Intel Celeron M Full details
- Intel Atom N450 Full details
- Intel Celeron M Full details
- Intel Core Solo T1350 Full details
- Intel Atom N455 Full details
- Intel Pentium M Full details
- Intel Celeron M Full details
- Intel Pentium M Full details
- Intel Celeron M 430 Full details
- Intel Celeron M 440 Full details
- Intel Atom N280 Full details
- Intel Celeron M 420 Full details
- Intel Atom N270 Full details
Impact of Changing Screen Resolution
Interestingly, if you're facing a processor bottleneck, altering the screen resolution may have a counterintuitive impact. Elevating the screen resolution will primarily stress the graphics card, thereby reducing the proportion of work that the processor needs to do in certain tasks. This makes it less likely that the processor will max out, though it does not replace the benefits of a processor upgrade for a balanced system.
Read moreReplace graphic cards
If the processor is causing the bottleneck, replacing the graphic card isn't generally recommended unless you're also planning to upgrade the processor. Downgrading your graphics card to better match the processor might alleviate the bottleneck, but it often results in a decrease in overall system performance, especially in graphics-heavy tasks like gaming or 3D rendering.
- AMD Mobility Radeon HD 560v Full details
- NVIDIA GeForce GT 230 Full details
- AMD Radeon HD 6620G Full details
- AMD Mobility Radeon HD 565v Full details
- NVIDIA GeForce 9800M GTS Full details
- AMD Radeon HD 6490M Full details
- NVIDIA GeForce GTX 260M Full details
- AMD Radeon HD 6480G Full details
- NVIDIA GeForce 410M Full details
- NVIDIA GeForce Go 7950 GTX Full details
- AMD Mobility Radeon HD 550v Full details
- AMD Radeon HD 6370M Full details
- NVIDIA GeForce 9700M GTS Full details
- NVIDIA GeForce GT 520M Full details
- NVIDIA GeForce GT 520MX Full details
- AMD Mobility Radeon HD 5165 Full details
- NVIDIA GeForce 610M Full details
- AMD Radeon HD 6520G Full details
- AMD Radeon HD 8350G Full details
- AMD Mobility Radeon HD 3670 Full details
- AMD Radeon HD 6470M Full details
- AMD Mobility Radeon HD 5470 Full details
- AMD Radeon HD 7340M Full details
- NVIDIA GeForce GT 330M Full details
- AMD Mobility Radeon HD 5450 Full details
- NVIDIA GeForce 9600M GT Full details
- NVIDIA GeForce GT 240M Full details
- NVIDIA GeForce GT 230M Full details
- NVIDIA GeForce 320M Full details
- NVIDIA GeForce 9700M GT Full details
- NVIDIA GeForce GT 220M Full details
- AMD Radeon HD 6380G Full details
- AMD Mobility Radeon HD 545v Full details
- AMD Radeon HD 6320M Full details
- AMD Mobility Radeon HD 2600 XT Full details
- AMD Mobility Radeon HD 4550 Full details
- AMD Mobility Radeon HD 540v Full details
- AMD Mobility Radeon HD 5430 Full details
- NVIDIA GeForce Go 7900 GS Full details
- AMD Mobility Radeon HD 530v Full details
- NVIDIA GeForce GT 325M Full details
- AMD Mobility Radeon HD 2600 Full details
- NVIDIA GeForce G102M Full details
- AMD Radeon HD 7310M Full details
- NVIDIA GeForce GT 120M Full details
- AMD Radeon HD 6320 Full details
- AMD Mobility Radeon HD 4350 Full details
- NVIDIA GeForce GT 130M Full details
- AMD Radeon HD 6300M Full details
- NVIDIA GeForce 9200M GE Full details
Impact of Changing Screen Resolution
Increasing the screen resolution in this case will demand more from your graphics card and can make the processor's bottleneck less noticeable in some scenarios, but again, it won't entirely solve the underlying problem.
Read moreBottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.