Saints Row IV bottleneck calculator
Intel Core i9-14900KF and NVIDIA TITAN Xp COLLECTORS EDITION
Saints Row IV
1280 × 1024
1 monitor
1. Select game
Currently selected:
Saints Row IV
2. Select processor
Currently selected:
Intel Core i9-14900KF
3. Select graphic card
Currently selected:
NVIDIA TITAN Xp COLLECTORS EDITION
4. Select resolution
Currently selected:
1280 × 1024 resolution
(1 monitor)
Calculation result
Bottleneck percentage
The Intel Core i9-14900KF may serve as a bottleneck for the NVIDIA TITAN Xp COLLECTORS EDITION in the Saints Row IV with 1280 × 1024 and 1 monitor. Although the NVIDIA TITAN Xp COLLECTORS EDITION is engineered to manage heavy graphical tasks, the Intel Core i9-14900KF might lack the processing power needed to fully unlock the NVIDIA TITAN Xp COLLECTORS EDITION capabilities. This imbalance may inhibit the overall efficiency of your system, slowing down processing and possibly compromising graphical fidelity. For a more harmonious hardware setup, upgrading to a high-performing processor that can meet the demands of current software and games is advised.
In a configuration featuring the Intel Core i9-14900KF and NVIDIA TITAN Xp COLLECTORS EDITION, with a screen resolution of 1280 × 1024 and 1 monitor, the system experiences a 5.6% bottleneck for Saints Row IV.
Processor and graphic card utilizations
In a computing setup featuring the Intel Core i9-14900KF and NVIDIA TITAN Xp COLLECTORS EDITION, under the context of Saints Row IV with a screen resolution of 1280 × 1024 and 1 monitor, the processor is expected to have an utilization rate of 83.2%, while the graphics card is projected to be utilized at 71%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
In gaming scenarios, your NVIDIA TITAN Xp COLLECTORS EDITION might not attain its full performance potential due to a lack of optimal utilization. This happens when the Intel Core i9-14900KF fails to handle and transmit data to the NVIDIA TITAN Xp COLLECTORS EDITION at an adequate speed. As a result, the Intel Core i9-14900KF will be operating at its maximum capacity, while the NVIDIA TITAN Xp COLLECTORS EDITION remains underutilized.
When it comes to bottlenecks, a processor bottleneck is generally viewed as more detrimental than a graphics card bottleneck. In cases of a processor bottleneck, the Intel Core i9-14900KF capacity reaches its limits, which may adversely affect other applications running concurrently. This situation can result in diminished responsiveness and multi-tasking capabilities.
Moreover, due to the processor bottleneck, the system might not leverage the full performance capabilities of the NVIDIA TITAN Xp COLLECTORS EDITION. Consequently, there could be restrictions in graphical rendering, frame rates, and the overall gaming experience.
To visualize these bottlenecks, consider examining our heatmap. On this heatmap, the X-axis represents the CPU Score, while the Y-axis denotes the GPU Score. A quick glance at this heatmap can offer invaluable insights into potential bottlenecks within various system configurations.
By correlating your Intel Core i9-14900KF CPU Score and NVIDIA TITAN Xp COLLECTORS EDITION GPU Score on the heatmap, you can acquire a more comprehensive understanding of how these components interact and where the bottlenecks might occur. Making well-informed hardware choices based on this heatmap analysis can lead to a more balanced and efficient computing setup for your specific needs.
General bottleneck calculations
The bottleneck calculations presented here are geared specifically towards in-game scenarios, providing valuable insights into how your hardware configuration could impact gaming performance. However, it's crucial to understand that bottlenecks can manifest in various types of tasks and applications. Below, you will find bottleneck calculations segmented into three primary categories: General Tasks, CPU Intensive Tasks, and GPU Intensive Tasks. This segmentation allows for a more nuanced understanding of how your system's components interact under different types of workloads.
General tasks bottleneck result
For general tasks that include web browsing, video streaming, office applications, and basic multitasking, the bottleneck result offers a comprehensive look at how well your CPU and GPU are balanced. If the bottleneck percentage leans heavily towards either the CPU or GPU, it might be beneficial to consider an upgrade for the more taxed component to ensure smoother system performance.
CPU intensive tasks bottleneck result
When it comes to CPU intensive tasks, such as video editing, 3D rendering, or scientific computing, the bottleneck calculation primarily focuses on whether your processor is powerful enough to handle these workloads efficiently. Here, a high bottleneck percentage for the CPU would indicate that your processor is the limiting factor, making tasks slower than they could be with a more robust CPU.
GPU intensive tasks bottleneck result
In scenarios involving GPU intensive tasks—like advanced gaming, graphical rendering, or video processing—the bottleneck calculation highlights the efficiency of your graphics card in relation to the overall system. A high bottleneck percentage on the GPU side would suggest that your graphics card is the limiting component, potentially hindering your system's ability to deliver optimal graphical performance.
Bottleneck solutions
Replace processor
When the processor becomes the system's bottleneck, upgrading it is often the most straightforward way to improve performance. Opting for a faster processor with more cores and higher clock speeds can effectively minimize or even eliminate the bottleneck, making it easier for your graphics card to perform to its maximum capability.
- AMD Ryzen Threadripper PRO 7995WX Full details
- AMD Ryzen Threadripper 7980X Full details
- AMD Ryzen Threadripper PRO 7985WX Full details
- AMD Ryzen Threadripper 7970X Full details
- AMD Ryzen Threadripper PRO 7975WX Full details
- AMD Ryzen Threadripper PRO 5995WX Full details
- AMD Ryzen Threadripper 3990X Full details
- AMD Ryzen Threadripper PRO 7965WX Full details
- AMD Ryzen Threadripper 7960X Full details
- AMD Ryzen Threadripper PRO 3995WX Full details
- AMD Ryzen Threadripper PRO 5975WX Full details
- AMD Ryzen Threadripper PRO 5965WX Full details
- Intel Core i9-14900KS Full details
- Intel Core i9-14900K Full details
- AMD Ryzen 9 7950X3D Full details
- AMD Ryzen 9 7950X Full details
- AMD Ryzen Threadripper 3970X Full details
- AMD Ryzen Threadripper PRO 3975WX Full details
- Intel Core i9-13900KS Full details
- Intel Core i9-13900K Full details
- AMD EPYC 9684X Full details
- AMD EPYC 9654 Full details
- AMD EPYC 9R14 Full details
- AMD EPYC 9554 Full details
- AMD EPYC 9654P Full details
- AMD EPYC 9634 Full details
- AMD EPYC 9554P Full details
- AMD EPYC 9474F Full details
- AMD EPYC 9454P Full details
- Intel Xeon w9-3495X Full details
- AMD EPYC 7763 Full details
- AMD EPYC 7J13 Full details
- AMD EPYC 7663 Full details
- AMD EPYC 7713 Full details
- AMD EPYC 9374F Full details
- AMD EPYC 7713P Full details
- AMD EPYC 7643 Full details
- AMD EPYC 9354P Full details
- AMD EPYC 8534P Full details
- AMD EPYC 7702 Full details
- AMD EPYC 7742 Full details
- AMD EPYC 7543P Full details
- AMD EPYC 8434P Full details
- Intel Xeon w7-3465X Full details
- Intel Xeon w9-3475X Full details
- AMD EPYC 7702P Full details
- AMD EPYC 74F3 Full details
- Intel Xeon Gold 5512U Full details
- AMD EPYC 7513 Full details
- Intel Xeon w7-2495X Full details
Impact of Changing Screen Resolution
Interestingly, if you're facing a processor bottleneck, altering the screen resolution may have a counterintuitive impact. Elevating the screen resolution will primarily stress the graphics card, thereby reducing the proportion of work that the processor needs to do in certain tasks. This makes it less likely that the processor will max out, though it does not replace the benefits of a processor upgrade for a balanced system.
Read moreReplace graphic cards
If the processor is causing the bottleneck, replacing the graphic card isn't generally recommended unless you're also planning to upgrade the processor. Downgrading your graphics card to better match the processor might alleviate the bottleneck, but it often results in a decrease in overall system performance, especially in graphics-heavy tasks like gaming or 3D rendering.
- AMD Radeon RX 7600 XT Full details
- AMD Radeon RX 6650 XT Full details
- NVIDIA GeForce RTX 2060 SUPER Full details
- AMD Radeon RX 6600 XT Full details
- AMD Radeon RX 5700 XT Full details
- AMD Radeon RX 5700 XT 50th Anniversary Full details
- AMD Radeon VII Full details
- NVIDIA GeForce RTX 3060 Full details
- AMD Radeon RX 7600 Full details
- NVIDIA GeForce RTX 2070 Full details
- AMD Radeon RX 7700S Full details
- NVIDIA GeForce GTX 1080 Full details
- AMD Radeon RX 6600 Full details
- NVIDIA GeForce RTX 2060 Full details
- AMD Radeon Pro W5700 Full details
- NVIDIA GeForce GTX 1070 Ti Full details
- AMD Radeon RX 5700 Full details
- AMD Radeon RX Vega 64 Full details
- NVIDIA GeForce GTX 1070 Full details
- AMD Radeon RX 5600 XT Full details
- NVIDIA GeForce GTX 980 Ti Full details
- NVIDIA TITAN X Full details
- NVIDIA RTX A2000 Full details
- AMD Radeon Pro WX 8200 Full details
- Intel Arc A770 Full details
- AMD Radeon RX Vega 56 Full details
- NVIDIA GeForce GTX TITAN X Full details
- AMD Radeon Vega Frontier Edition Full details
- NVIDIA GeForce GTX 1660 SUPER Full details
- NVIDIA GeForce GTX 1660 Ti Full details
- AMD Radeon Pro 5700 XT Full details
- AMD Radeon Pro Vega 56 Full details
- AMD Radeon Pro WX 9100 Full details
- NVIDIA GeForce RTX 3050 Full details
- NVIDIA GeForce GTX 1660 Full details
- Intel Arc A750 Full details
- NVIDIA GeForce RTX 3050 OEM Full details
- AMD Radeon RX 5600 OEM Full details
- AMD Radeon RX 5600 Full details
- NVIDIA Quadro GP100 Full details
- AMD Radeon PRO W6600 Full details
- NVIDIA Quadro RTX 5000 Full details
- NVIDIA Quadro RTX 4000 Full details
- NVIDIA Quadro P6000 Full details
- AMD Radeon Pro VII Full details
- AMD Radeon Pro Vega 64 Full details
- NVIDIA Quadro P5000 Full details
- NVIDIA Tesla P40 Full details
- NVIDIA Quadro M6000 Full details
- NVIDIA Quadro P4000 Full details
Impact of Changing Screen Resolution
Increasing the screen resolution in this case will demand more from your graphics card and can make the processor's bottleneck less noticeable in some scenarios, but again, it won't entirely solve the underlying problem.
Read moreBottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.