AdVenture Capitalist bottleneck calculator
AMD PRO A10-8700B and NVIDIA GeForce GTX 1650 (Max-Q Design)
AdVenture Capitalist
5120 × 2880
1 monitor
1. Select game
Currently selected:
AdVenture Capitalist
2. Select processor
Currently selected:
AMD PRO A10-8700B
3. Select graphic card
Currently selected:
NVIDIA GeForce GTX 1650 (Max-Q Design)
4. Select resolution
Currently selected:
5120 × 2880 resolution
(1 monitor)
Calculation result
Bottleneck percentage
The AMD PRO A10-8700B may serve as a bottleneck for the NVIDIA GeForce GTX 1650 (Max-Q Design) in the AdVenture Capitalist with 5120 × 2880 and 1 monitor. Although the NVIDIA GeForce GTX 1650 (Max-Q Design) is engineered to manage heavy graphical tasks, the AMD PRO A10-8700B might lack the processing power needed to fully unlock the NVIDIA GeForce GTX 1650 (Max-Q Design) capabilities. This imbalance may inhibit the overall efficiency of your system, slowing down processing and possibly compromising graphical fidelity. For a more harmonious hardware setup, upgrading to a high-performing processor that can meet the demands of current software and games is advised.
In a configuration featuring the AMD PRO A10-8700B and NVIDIA GeForce GTX 1650 (Max-Q Design), with a screen resolution of 5120 × 2880 and 1 monitor, the system experiences a 3.5% bottleneck for AdVenture Capitalist.
Processor and graphic card utilizations
In a computing setup featuring the AMD PRO A10-8700B and NVIDIA GeForce GTX 1650 (Max-Q Design), under the context of AdVenture Capitalist with a screen resolution of 5120 × 2880 and 1 monitor, the processor is expected to have an utilization rate of 83.2%, while the graphics card is projected to be utilized at 71.1%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
In gaming scenarios, your NVIDIA GeForce GTX 1650 (Max-Q Design) might not attain its full performance potential due to a lack of optimal utilization. This happens when the AMD PRO A10-8700B fails to handle and transmit data to the NVIDIA GeForce GTX 1650 (Max-Q Design) at an adequate speed. As a result, the AMD PRO A10-8700B will be operating at its maximum capacity, while the NVIDIA GeForce GTX 1650 (Max-Q Design) remains underutilized.
When it comes to bottlenecks, a processor bottleneck is generally viewed as more detrimental than a graphics card bottleneck. In cases of a processor bottleneck, the AMD PRO A10-8700B capacity reaches its limits, which may adversely affect other applications running concurrently. This situation can result in diminished responsiveness and multi-tasking capabilities.
Moreover, due to the processor bottleneck, the system might not leverage the full performance capabilities of the NVIDIA GeForce GTX 1650 (Max-Q Design). Consequently, there could be restrictions in graphical rendering, frame rates, and the overall gaming experience.
To visualize these bottlenecks, consider examining our heatmap. On this heatmap, the X-axis represents the CPU Score, while the Y-axis denotes the GPU Score. A quick glance at this heatmap can offer invaluable insights into potential bottlenecks within various system configurations.
By correlating your AMD PRO A10-8700B CPU Score and NVIDIA GeForce GTX 1650 (Max-Q Design) GPU Score on the heatmap, you can acquire a more comprehensive understanding of how these components interact and where the bottlenecks might occur. Making well-informed hardware choices based on this heatmap analysis can lead to a more balanced and efficient computing setup for your specific needs.
General bottleneck calculations
The bottleneck calculations presented here are geared specifically towards in-game scenarios, providing valuable insights into how your hardware configuration could impact gaming performance. However, it's crucial to understand that bottlenecks can manifest in various types of tasks and applications. Below, you will find bottleneck calculations segmented into three primary categories: General Tasks, CPU Intensive Tasks, and GPU Intensive Tasks. This segmentation allows for a more nuanced understanding of how your system's components interact under different types of workloads.
General tasks bottleneck result
For general tasks that include web browsing, video streaming, office applications, and basic multitasking, the bottleneck result offers a comprehensive look at how well your CPU and GPU are balanced. If the bottleneck percentage leans heavily towards either the CPU or GPU, it might be beneficial to consider an upgrade for the more taxed component to ensure smoother system performance.
CPU intensive tasks bottleneck result
When it comes to CPU intensive tasks, such as video editing, 3D rendering, or scientific computing, the bottleneck calculation primarily focuses on whether your processor is powerful enough to handle these workloads efficiently. Here, a high bottleneck percentage for the CPU would indicate that your processor is the limiting factor, making tasks slower than they could be with a more robust CPU.
GPU intensive tasks bottleneck result
In scenarios involving GPU intensive tasks—like advanced gaming, graphical rendering, or video processing—the bottleneck calculation highlights the efficiency of your graphics card in relation to the overall system. A high bottleneck percentage on the GPU side would suggest that your graphics card is the limiting component, potentially hindering your system's ability to deliver optimal graphical performance.
Bottleneck solutions
Replace processor
When the processor becomes the system's bottleneck, upgrading it is often the most straightforward way to improve performance. Opting for a faster processor with more cores and higher clock speeds can effectively minimize or even eliminate the bottleneck, making it easier for your graphics card to perform to its maximum capability.
- Intel Core i5-6300U Full details
- Intel Core i7-6500U Full details
- AMD FX-9830P Full details
- Intel Celeron N5100 Full details
- Intel Core i7-6560U Full details
- Intel Core i7-2635QM Full details
- Intel Core i5-4340M Full details
- Intel Core i5-7200U Full details
- Intel Core i5-6267U Full details
- Intel Core i3-7100H Full details
- Intel Core i7-6600U Full details
- Intel Core i5-L16G7 Full details
- Intel Core i5-3380M Full details
- AMD A10-9630P Full details
- Intel Core i5-4308U Full details
- AMD Athlon Silver 3050e Full details
- AMD A12-9730P Full details
- Intel Core i5-4300M Full details
- Intel Core i7-3540M Full details
- AMD Athlon Silver 3050U Full details
- Intel Core i5-6200U Full details
- Intel Core i7-5650U Full details
- Intel Core i7-4558U Full details
- Intel Core i3-7130U Full details
- Intel Core i7-5600U Full details
- Intel Core i3-6100H Full details
- Intel Core i5-4210H Full details
- Intel Core i5-5287U Full details
- Intel Core i7-5557U Full details
- Intel Core i7-4578U Full details
- Intel Core i5-6360U Full details
- Intel Core i5-4310M Full details
- Intel Core i5-6198DU Full details
- Intel Core i3-4350T Full details
- Intel Core i7-4600M Full details
- Intel Core i7-4610M Full details
- Intel Core i5-6260U Full details
- Intel Core i5-4330M Full details
- Intel Pentium Silver N5000 Full details
- Intel Core i5-4258U Full details
- Intel Core i5-4288U Full details
- Intel Core i3-6100U Full details
- Intel Core i7-3687U Full details
- Intel Core i5-7Y54 Full details
- AMD A12-9720P Full details
- Intel Core i5-3610ME Full details
- Intel Core i5-3320M Full details
- AMD PRO A12-9800B Full details
- Intel Core i5-3340M Full details
- Intel Core i7-4600U Full details
Impact of Changing Screen Resolution
Interestingly, if you're facing a processor bottleneck, altering the screen resolution may have a counterintuitive impact. Elevating the screen resolution will primarily stress the graphics card, thereby reducing the proportion of work that the processor needs to do in certain tasks. This makes it less likely that the processor will max out, though it does not replace the benefits of a processor upgrade for a balanced system.
Read moreReplace graphic cards
If the processor is causing the bottleneck, replacing the graphic card isn't generally recommended unless you're also planning to upgrade the processor. Downgrading your graphics card to better match the processor might alleviate the bottleneck, but it often results in a decrease in overall system performance, especially in graphics-heavy tasks like gaming or 3D rendering.
- AMD Radeon RX 6500M Full details
- NVIDIA GeForce GTX 1060 (Max-Q Design) Full details
- NVIDIA GeForce GTX 1060 Full details
- NVIDIA GeForce RTX 2050 Full details
- NVIDIA GeForce GTX 1650 Ti Full details
- NVIDIA Quadro T2000 Full details
- NVIDIA GeForce GTX 980M Full details
- NVIDIA GeForce GTX 1650 Full details
- AMD Radeon Pro 5500M Full details
- NVIDIA Quadro T2000 (Max-Q Design) Full details
- NVIDIA Quadro M5000M Full details
- AMD Radeon 780M Full details
- NVIDIA Quadro T1000 Full details
- NVIDIA Quadro P3000 Full details
- NVIDIA Quadro T1000 (Max-Q Design) Full details
- NVIDIA RTX A500 Full details
- NVIDIA Quadro M4000M Full details
- NVIDIA GeForce GTX 1650 Ti (Max-Q Design) Full details
- NVIDIA GeForce GTX 1050 Ti Full details
- AMD Radeon 760M Full details
- NVIDIA GeForce MX570 A Full details
- AMD Radeon Pro 5300M Full details
- NVIDIA GeForce GTX 970M Full details
- NVIDIA GeForce MX570 Full details
- NVIDIA GeForce GTX 1050 Ti (Max-Q Design) Full details
- AMD Radeon RX 5500M Full details
- NVIDIA Quadro M3000M Full details
- AMD Radeon R9 M295X Full details
- AMD Radeon R9 M395X Full details
- AMD Radeon R9 M395 Full details
- NVIDIA GeForce MX550 Full details
- NVIDIA GeForce GTX 1050 Full details
- AMD Radeon RX 5300M Full details
- NVIDIA Quadro M2200 Full details
- NVIDIA GeForce GTX 680MX Full details
- NVIDIA GeForce GTX 1050 (Max-Q Design) Full details
- AMD Radeon HD 8970M Full details
- NVIDIA GeForce GTX 780M Full details
- NVIDIA GeForce GTX 880M Full details
- NVIDIA GeForce GTX 965M Full details
- NVIDIA GeForce MX450 Full details
- AMD Radeon R9 M390X Full details
- NVIDIA GeForce GTX 775M Full details
- AMD Radeon HD 7970M Full details
- AMD Radeon 740M Full details
- NVIDIA Quadro M2000M Full details
- NVIDIA GeForce GTX 870M Full details
- NVIDIA GeForce GTX 960M Full details
- AMD Radeon HD8970M Full details
- AMD Radeon R9 M470X Full details
Impact of Changing Screen Resolution
Increasing the screen resolution in this case will demand more from your graphics card and can make the processor's bottleneck less noticeable in some scenarios, but again, it won't entirely solve the underlying problem.
Read moreBottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.