Titanfall bottleneck calculator
Intel Celeron 1037U and NVIDIA Quadro M1000M
Titanfall
11520 × 2160
1 monitor
1. Select game
Currently selected:
Titanfall
2. Select processor
Currently selected:
Intel Celeron 1037U
3. Select graphic card
Currently selected:
NVIDIA Quadro M1000M
4. Select resolution
Currently selected:
11520 × 2160 resolution
(1 monitor)
Calculation result
Bottleneck percentage
The Intel Celeron 1037U may serve as a bottleneck for the NVIDIA Quadro M1000M in the Titanfall with 11520 × 2160 and 1 monitor. Although the NVIDIA Quadro M1000M is engineered to manage heavy graphical tasks, the Intel Celeron 1037U might lack the processing power needed to fully unlock the NVIDIA Quadro M1000M capabilities. This imbalance may inhibit the overall efficiency of your system, slowing down processing and possibly compromising graphical fidelity. For a more harmonious hardware setup, upgrading to a high-performing processor that can meet the demands of current software and games is advised.
In a configuration featuring the Intel Celeron 1037U and NVIDIA Quadro M1000M, with a screen resolution of 11520 × 2160 and 1 monitor, the system experiences a 6.2% bottleneck for Titanfall.
Processor and graphic card utilizations
In a computing setup featuring the Intel Celeron 1037U and NVIDIA Quadro M1000M, under the context of Titanfall with a screen resolution of 11520 × 2160 and 1 monitor, the processor is expected to have an utilization rate of 82.8%, while the graphics card is projected to be utilized at 70.6%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
In gaming scenarios, your NVIDIA Quadro M1000M might not attain its full performance potential due to a lack of optimal utilization. This happens when the Intel Celeron 1037U fails to handle and transmit data to the NVIDIA Quadro M1000M at an adequate speed. As a result, the Intel Celeron 1037U will be operating at its maximum capacity, while the NVIDIA Quadro M1000M remains underutilized.
When it comes to bottlenecks, a processor bottleneck is generally viewed as more detrimental than a graphics card bottleneck. In cases of a processor bottleneck, the Intel Celeron 1037U capacity reaches its limits, which may adversely affect other applications running concurrently. This situation can result in diminished responsiveness and multi-tasking capabilities.
Moreover, due to the processor bottleneck, the system might not leverage the full performance capabilities of the NVIDIA Quadro M1000M. Consequently, there could be restrictions in graphical rendering, frame rates, and the overall gaming experience.
To visualize these bottlenecks, consider examining our heatmap. On this heatmap, the X-axis represents the CPU Score, while the Y-axis denotes the GPU Score. A quick glance at this heatmap can offer invaluable insights into potential bottlenecks within various system configurations.
By correlating your Intel Celeron 1037U CPU Score and NVIDIA Quadro M1000M GPU Score on the heatmap, you can acquire a more comprehensive understanding of how these components interact and where the bottlenecks might occur. Making well-informed hardware choices based on this heatmap analysis can lead to a more balanced and efficient computing setup for your specific needs.
General bottleneck calculations
The bottleneck calculations presented here are geared specifically towards in-game scenarios, providing valuable insights into how your hardware configuration could impact gaming performance. However, it's crucial to understand that bottlenecks can manifest in various types of tasks and applications. Below, you will find bottleneck calculations segmented into three primary categories: General Tasks, CPU Intensive Tasks, and GPU Intensive Tasks. This segmentation allows for a more nuanced understanding of how your system's components interact under different types of workloads.
General tasks bottleneck result
For general tasks that include web browsing, video streaming, office applications, and basic multitasking, the bottleneck result offers a comprehensive look at how well your CPU and GPU are balanced. If the bottleneck percentage leans heavily towards either the CPU or GPU, it might be beneficial to consider an upgrade for the more taxed component to ensure smoother system performance.
CPU intensive tasks bottleneck result
When it comes to CPU intensive tasks, such as video editing, 3D rendering, or scientific computing, the bottleneck calculation primarily focuses on whether your processor is powerful enough to handle these workloads efficiently. Here, a high bottleneck percentage for the CPU would indicate that your processor is the limiting factor, making tasks slower than they could be with a more robust CPU.
GPU intensive tasks bottleneck result
In scenarios involving GPU intensive tasks—like advanced gaming, graphical rendering, or video processing—the bottleneck calculation highlights the efficiency of your graphics card in relation to the overall system. A high bottleneck percentage on the GPU side would suggest that your graphics card is the limiting component, potentially hindering your system's ability to deliver optimal graphical performance.
Bottleneck solutions
Replace processor
When the processor becomes the system's bottleneck, upgrading it is often the most straightforward way to improve performance. Opting for a faster processor with more cores and higher clock speeds can effectively minimize or even eliminate the bottleneck, making it easier for your graphics card to perform to its maximum capability.
- Intel Celeron 5205U Full details
- Intel Core i5-2467M Full details
- AMD A6-8500P Full details
- AMD A6-3430MX Full details
- AMD A8-3520M Full details
- Intel Core i7-620LM Full details
- Intel Core i3-2350M Full details
- AMD A6-3410MX Full details
- Intel Core i3-2348M Full details
- AMD A6-9220 Full details
- Intel Core i3-4012Y Full details
- Intel Celeron 3855U Full details
- Intel Core i3-3227U Full details
- Intel Atom x7-Z8750 Full details
- AMD A6-3420M Full details
- AMD A4-5000 Full details
- AMD Phenom II N850 Full details
- Intel Core i5-460M Full details
- AMD Phenom II P940 Full details
- Intel Celeron 3865U Full details
- Intel Core i5-480M Full details
- Intel Atom x7-Z8700 Full details
- AMD Phenom II N870 Full details
- AMD A4-5050 Full details
- Intel Pentium 3550M Full details
- AMD A8-4555M Full details
- AMD A6-9225 Full details
- Intel Pentium 3560M Full details
- AMD A4-5100 Full details
- AMD A9-9400 Full details
- Intel Core i3-2370M Full details
- Intel Celeron 4205U Full details
- AMD PRO A6-9500B Full details
- AMD Phenom II P960 Full details
- Intel Pentium N3710 Full details
- Intel Pentium 2020M Full details
- Intel Pentium 3825U Full details
- Intel Celeron N4000C Full details
- AMD A8-3500M Full details
- AMD GX-415GA SOC Full details
- Intel Pentium 2030M Full details
- Intel Celeron N4000 Full details
- Intel Core2 Extreme X9000 Full details
- AMD A9-9420e Full details
- Intel Celeron 1005M Full details
- Intel Core2 Duo E8435 Full details
- Intel Core2 Extreme X7900 Full details
- Intel Celeron N3350 Full details
- Intel Core2 Duo E8135 Full details
- AMD A6-9200 Full details
Impact of Changing Screen Resolution
Interestingly, if you're facing a processor bottleneck, altering the screen resolution may have a counterintuitive impact. Elevating the screen resolution will primarily stress the graphics card, thereby reducing the proportion of work that the processor needs to do in certain tasks. This makes it less likely that the processor will max out, though it does not replace the benefits of a processor upgrade for a balanced system.
Read moreReplace graphic cards
If the processor is causing the bottleneck, replacing the graphic card isn't generally recommended unless you're also planning to upgrade the processor. Downgrading your graphics card to better match the processor might alleviate the bottleneck, but it often results in a decrease in overall system performance, especially in graphics-heavy tasks like gaming or 3D rendering.
- AMD Radeon 740M Full details
- AMD Radeon HD 7970M Full details
- AMD Radeon HD8970M Full details
- NVIDIA GeForce GTX 960M Full details
- NVIDIA GeForce GTX 870M Full details
- NVIDIA Quadro M2000M Full details
- NVIDIA GeForce GTX 860M Full details
- NVIDIA GeForce GTX 960A Full details
- NVIDIA GeForce GTX 680M Full details
- NVIDIA Quadro M1200 Full details
- AMD Radeon R9 M470X Full details
- NVIDIA GeForce GTX 675MX Full details
- AMD Radeon R9 M380 Full details
- NVIDIA Quadro M620 Full details
- NVIDIA GeForce GTX 770M Full details
- NVIDIA GeForce MX350 Full details
- NVIDIA GeForce MX330 Full details
- NVIDIA GeForce MX250 Full details
- AMD Radeon Pro WX 3200 Full details
- NVIDIA GeForce GTX 850M Full details
- NVIDIA GeForce GTX 950A Full details
- NVIDIA GeForce GTX 950M Full details
- AMD Radeon Pro WX 4150 Full details
- AMD Radeon R9 M290X Full details
- NVIDIA GeForce MX150 Full details
- NVIDIA GeForce GTX 485M Full details
- NVIDIA GeForce GTX 580M Full details
- NVIDIA GeForce 945M Full details
- NVIDIA Quadro M600M Full details
- NVIDIA GeForce GTX 765M Full details
- AMD Radeon Pro WX 4130 Full details
- NVIDIA GeForce GTX 670MX Full details
- NVIDIA GeForce GTX 675M Full details
- NVIDIA Quadro M520 Full details
- NVIDIA GeForce GTX 570M Full details
- NVIDIA GeForce MX130 Full details
- NVIDIA GeForce MX230 Full details
- AMD Radeon Pro WX 2100 Full details
- AMD Firepro W5170M Full details
- NVIDIA GeForce GTX 670M Full details
- AMD Radeon R9 M375X Full details
- NVIDIA GeForce GTX 760M Full details
- AMD Radeon HD 6900M Full details
- NVIDIA GeForce GT 755M Full details
- AMD Radeon HD 8870M Full details
- NVIDIA GeForce GTX 480M Full details
- Intel Iris Plus 650 Full details
- AMD Radeon R9 M275X Full details
- AMD FirePro M6000 Mobility Pro Full details
- AMD FirePro M4000 Mobility Pro Full details
Impact of Changing Screen Resolution
Increasing the screen resolution in this case will demand more from your graphics card and can make the processor's bottleneck less noticeable in some scenarios, but again, it won't entirely solve the underlying problem.
Read moreBottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.