Terraria bottleneck calculator
Intel Xeon X5460 and AMD Radeon HD 4890
Terraria
1024 × 768
1 monitor
1. Select game
Currently selected:
Terraria
2. Select processor
Currently selected:
Intel Xeon X5460
3. Select graphic card
Currently selected:
AMD Radeon HD 4890
4. Select resolution
Currently selected:
1024 × 768 resolution
(1 monitor)
Calculation result
Bottleneck percentage
The Intel Xeon X5460 may serve as a bottleneck for the AMD Radeon HD 4890 in the Terraria with 1024 × 768 and 1 monitor. Although the AMD Radeon HD 4890 is engineered to manage heavy graphical tasks, the Intel Xeon X5460 might lack the processing power needed to fully unlock the AMD Radeon HD 4890 capabilities. This imbalance may inhibit the overall efficiency of your system, slowing down processing and possibly compromising graphical fidelity. For a more harmonious hardware setup, upgrading to a high-performing processor that can meet the demands of current software and games is advised.
In a configuration featuring the Intel Xeon X5460 and AMD Radeon HD 4890, with a screen resolution of 1024 × 768 and 1 monitor, the system experiences a 2.1% bottleneck for Terraria.
Processor and graphic card utilizations
In a computing setup featuring the Intel Xeon X5460 and AMD Radeon HD 4890, under the context of Terraria with a screen resolution of 1024 × 768 and 1 monitor, the processor is expected to have an utilization rate of 83.2%, while the graphics card is projected to be utilized at 73.8%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
In gaming scenarios, your AMD Radeon HD 4890 might not attain its full performance potential due to a lack of optimal utilization. This happens when the Intel Xeon X5460 fails to handle and transmit data to the AMD Radeon HD 4890 at an adequate speed. As a result, the Intel Xeon X5460 will be operating at its maximum capacity, while the AMD Radeon HD 4890 remains underutilized.
When it comes to bottlenecks, a processor bottleneck is generally viewed as more detrimental than a graphics card bottleneck. In cases of a processor bottleneck, the Intel Xeon X5460 capacity reaches its limits, which may adversely affect other applications running concurrently. This situation can result in diminished responsiveness and multi-tasking capabilities.
Moreover, due to the processor bottleneck, the system might not leverage the full performance capabilities of the AMD Radeon HD 4890. Consequently, there could be restrictions in graphical rendering, frame rates, and the overall gaming experience.
To visualize these bottlenecks, consider examining our heatmap. On this heatmap, the X-axis represents the CPU Score, while the Y-axis denotes the GPU Score. A quick glance at this heatmap can offer invaluable insights into potential bottlenecks within various system configurations.
By correlating your Intel Xeon X5460 CPU Score and AMD Radeon HD 4890 GPU Score on the heatmap, you can acquire a more comprehensive understanding of how these components interact and where the bottlenecks might occur. Making well-informed hardware choices based on this heatmap analysis can lead to a more balanced and efficient computing setup for your specific needs.
General bottleneck calculations
The bottleneck calculations presented here are geared specifically towards in-game scenarios, providing valuable insights into how your hardware configuration could impact gaming performance. However, it's crucial to understand that bottlenecks can manifest in various types of tasks and applications. Below, you will find bottleneck calculations segmented into three primary categories: General Tasks, CPU Intensive Tasks, and GPU Intensive Tasks. This segmentation allows for a more nuanced understanding of how your system's components interact under different types of workloads.
General tasks bottleneck result
For general tasks that include web browsing, video streaming, office applications, and basic multitasking, the bottleneck result offers a comprehensive look at how well your CPU and GPU are balanced. If the bottleneck percentage leans heavily towards either the CPU or GPU, it might be beneficial to consider an upgrade for the more taxed component to ensure smoother system performance.
CPU intensive tasks bottleneck result
When it comes to CPU intensive tasks, such as video editing, 3D rendering, or scientific computing, the bottleneck calculation primarily focuses on whether your processor is powerful enough to handle these workloads efficiently. Here, a high bottleneck percentage for the CPU would indicate that your processor is the limiting factor, making tasks slower than they could be with a more robust CPU.
GPU intensive tasks bottleneck result
In scenarios involving GPU intensive tasks—like advanced gaming, graphical rendering, or video processing—the bottleneck calculation highlights the efficiency of your graphics card in relation to the overall system. A high bottleneck percentage on the GPU side would suggest that your graphics card is the limiting component, potentially hindering your system's ability to deliver optimal graphical performance.
Bottleneck solutions
Replace processor
When the processor becomes the system's bottleneck, upgrading it is often the most straightforward way to improve performance. Opting for a faster processor with more cores and higher clock speeds can effectively minimize or even eliminate the bottleneck, making it easier for your graphics card to perform to its maximum capability.
- Intel Core i3-6100 Full details
- AMD FX-6300 Full details
- AMD Ryzen 3 PRO 2100GE Full details
- Intel Core i5-3330 Full details
- AMD PRO A12-8870 Full details
- Intel Core i3-6300T Full details
- Intel Core i3-6098P Full details
- AMD FX-8100 Full details
- Intel Core i5-4590T Full details
- Intel Celeron N5095 Full details
- AMD FX-6200 Full details
- Intel Core i5-3570T Full details
- AMD Athlon 200GE Full details
- Intel Core i5-2500K Full details
- Intel Core i5-2500 Full details
- Intel Pentium Gold G6400 Full details
- Intel Celeron N5095A Full details
- Intel Core i5-2550K Full details
- Intel Pentium Gold G6500 Full details
- Intel Core i5-2450P Full details
- Intel Core i3-7300T Full details
- Intel Core i5-2400 Full details
- Intel Core i3-4170 Full details
- AMD Athlon X4 950 Full details
- AMD A12-9800 Full details
- Intel Pentium G4600 Full details
- Intel Core i3-4360 Full details
- Intel Core i5-2310 Full details
- Intel Core i5-4460T Full details
- AMD PRO A10-9700 Full details
- Intel Core i3-6100T Full details
- AMD Athlon X4 880K Full details
- Intel Core i5-2320 Full details
- AMD FX-6100 Full details
- AMD PRO A12-9800 Full details
- Intel Pentium Gold G5420 Full details
- Intel Pentium Gold G5400 Full details
- AMD PRO A10-8850B Full details
- Intel Pentium G4620 Full details
- AMD Phenom II X6 1090T Full details
- Intel Core i3-7100T Full details
- Intel Xeon E3-1260L Full details
- AMD Opteron 3365 Full details
- Intel Xeon E5-1607 v2 Full details
- Intel Xeon W3580 Full details
- Intel Xeon E5640 Full details
- Intel Xeon L5638 Full details
- AMD Opteron 3280 Full details
- Intel Xeon E3-1265L Full details
- Intel Xeon E5-1607 Full details
Impact of Changing Screen Resolution
Interestingly, if you're facing a processor bottleneck, altering the screen resolution may have a counterintuitive impact. Elevating the screen resolution will primarily stress the graphics card, thereby reducing the proportion of work that the processor needs to do in certain tasks. This makes it less likely that the processor will max out, though it does not replace the benefits of a processor upgrade for a balanced system.
Read moreReplace graphic cards
If the processor is causing the bottleneck, replacing the graphic card isn't generally recommended unless you're also planning to upgrade the processor. Downgrading your graphics card to better match the processor might alleviate the bottleneck, but it often results in a decrease in overall system performance, especially in graphics-heavy tasks like gaming or 3D rendering.
- NVIDIA GeForce GTX 550 Ti Full details
- AMD Radeon Vega 10 Full details
- NVIDIA GeForce GTX 275 Full details
- AMD Radeon 540X Full details
- AMD Radeon 550X Full details
- AMD Radeon R9 255 Full details
- AMD Radeon R7 FX-9830P Radeon Full details
- AMD Radeon RX Vega 8 Full details
- NVIDIA GeForce GT 740 Full details
- NVIDIA GeForce GTX 285 Full details
- AMD Radeon 630 Full details
- NVIDIA GeForce GTX 280 Full details
- AMD Radeon HD 4870 X2 Full details
- AMD Radeon Vega 6 Full details
- NVIDIA GeForce GTS 450 Full details
- AMD Radeon HD 5770 Full details
- AMD Radeon HD 4870 Full details
- AMD Radeon 540 Full details
- AMD Radeon HD 4850 X2 Full details
- AMD Radeon HD 5750 Full details
- AMD Radeon R7 Opteron X3421 Full details
- NVIDIA GeForce GT 640 Full details
- AMD Radeon HD 7730 Full details
- NVIDIA GeForce GTX 295 Full details
- NVIDIA GeForce GTX 260 Full details
- AMD Radeon HD 6770 Full details
- AMD Radeon R7 A10-7870K Full details
- NVIDIA GeForce GT 545 Full details
- AMD Radeon R7 M465 Full details
- AMD Radeon R7 M350 Full details
- AMD Radeon R7 430 Full details
- AMD Radeon R7 A12-9800 Radeon Full details
- AMD Radeon 625 Full details
- AMD Radeon R7 M460 Full details
- AMD Radeon 535 Full details
- AMD Radeon R7 250 Full details
- AMD FirePro W5130M Full details
- NVIDIA Quadro 4000 Full details
- AMD FirePro W4100 Full details
- AMD FirePro V5900 Full details
- NVIDIA Quadro 4000M Full details
- NVIDIA Quadro K2100M Full details
- AMD FirePro M4170 Full details
- AMD Firepro W4190M Full details
- AMD FirePro V5800 Full details
- AMD FirePro 3D V8700 Full details
- NVIDIA Quadro FX 5800 Full details
- AMD FirePro 3D V5800 Full details
- NVIDIA Quadro K1100M Full details
- AMD Firepro M4100 Full details
Impact of Changing Screen Resolution
Increasing the screen resolution in this case will demand more from your graphics card and can make the processor's bottleneck less noticeable in some scenarios, but again, it won't entirely solve the underlying problem.
Read moreBottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.