Prey bottleneck calculator
Intel Pentium G3440 and NVIDIA GeForce GTX 650 Ti
Prey
1600 × 900
1 monitor
1. Select game
Currently selected:
Prey
2. Select processor
Currently selected:
Intel Pentium G3440
3. Select graphic card
Currently selected:
NVIDIA GeForce GTX 650 Ti
4. Select resolution
Currently selected:
1600 × 900 resolution
(1 monitor)
Calculation result
Bottleneck percentage
In a system configuration featuring the Intel Pentium G3440 and NVIDIA GeForce GTX 650 Ti, the NVIDIA GeForce GTX 650 Ti could potentially act as a bottleneck to the Intel Pentium G3440 performance in the Prey with 1600 × 900 and 1 monitor. While the Intel Pentium G3440 is well-equipped to manage strenuous computational tasks, the NVIDIA GeForce GTX 650 Ti limited graphical prowess may compromise the overall system efficiency. This disparity could lead to decreased performance and less effective utilization of system resources. To rectify this imbalance, an upgrade to a more capable graphics card that complements the Intel Pentium G3440 processing abilities is advisable.
With a screen resolution of 1600 × 900 and 1 monitor, this configuration demonstrates a 6.3% graphics card bottleneck when performing Prey.
Processor and graphic card utilizations
In a computing setup featuring the Intel Pentium G3440 and NVIDIA GeForce GTX 650 Ti, under the context of Prey with a screen resolution of 1600 × 900 and 1 monitor, the processor is expected to have an utilization rate of 70.6%, while the graphics card is projected to be utilized at 83.2%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
During gameplay scenarios, your Intel Pentium G3440 might not operate at its full potential due to the constraints imposed by the NVIDIA GeForce GTX 650 Ti. In such cases, the NVIDIA GeForce GTX 650 Ti may struggle to swiftly process and relay data, resulting in underutilization of the Intel Pentium G3440. Therefore, the NVIDIA GeForce GTX 650 Ti will be operating at its maximum capacity, leaving the Intel Pentium G3440 capabilities untapped.
In the hierarchy of bottlenecks, a graphics card bottleneck is often considered less severe than a processor bottleneck. When a graphics card bottleneck occurs, the NVIDIA GeForce GTX 650 Ti operates at its uppermost limits, thereby allowing you to extract the best performance possible from the card. This ensures that you benefit from the full scope of the NVIDIA GeForce GTX 650 Ti features.
One distinct advantage of not maxing out the Intel Pentium G3440 is the enhanced ability to efficiently manage other background tasks. As the Intel Pentium G3440 is not operating at full capacity while gaming, it can allocate computational resources to other ongoing activities like background processes or multitasking, without any performance trade-offs. This contributes to a smoother and more flexible overall system operation.
To gain a deeper understanding of these potential bottlenecks, consider referring to our heatmap. On the heatmap, the X-axis depicts the CPU Score, and the Y-axis signifies the GPU Score. This visualization can help identify the relationship between various CPUs and GPUs, giving you valuable insights into how to better balance your system.
By matching your Intel Pentium G3440 CPU Score with the NVIDIA GeForce GTX 650 Ti GPU Score on the heatmap, you can more accurately assess how these components interact and pinpoint where bottlenecks may occur. Utilizing this heatmap analysis can guide you in making informed hardware decisions that lead to a more balanced and effective computing setup tailored to your specific needs.
General bottleneck calculations
The bottleneck calculations presented here are geared specifically towards in-game scenarios, providing valuable insights into how your hardware configuration could impact gaming performance. However, it's crucial to understand that bottlenecks can manifest in various types of tasks and applications. Below, you will find bottleneck calculations segmented into three primary categories: General Tasks, CPU Intensive Tasks, and GPU Intensive Tasks. This segmentation allows for a more nuanced understanding of how your system's components interact under different types of workloads.
General tasks bottleneck result
For general tasks that include web browsing, video streaming, office applications, and basic multitasking, the bottleneck result offers a comprehensive look at how well your CPU and GPU are balanced. If the bottleneck percentage leans heavily towards either the CPU or GPU, it might be beneficial to consider an upgrade for the more taxed component to ensure smoother system performance.
CPU intensive tasks bottleneck result
When it comes to CPU intensive tasks, such as video editing, 3D rendering, or scientific computing, the bottleneck calculation primarily focuses on whether your processor is powerful enough to handle these workloads efficiently. Here, a high bottleneck percentage for the CPU would indicate that your processor is the limiting factor, making tasks slower than they could be with a more robust CPU.
GPU intensive tasks bottleneck result
In scenarios involving GPU intensive tasks—like advanced gaming, graphical rendering, or video processing—the bottleneck calculation highlights the efficiency of your graphics card in relation to the overall system. A high bottleneck percentage on the GPU side would suggest that your graphics card is the limiting component, potentially hindering your system's ability to deliver optimal graphical performance.
Bottleneck solutions
Replace processor
If your graphic card is causing the bottleneck but you're considering replacing your processor, reconsider this approach. Unless your processor is already on the verge of becoming outdated, upgrading it might not offer a significant performance boost, particularly in graphics-heavy tasks.
- AMD A6-7480 Full details
- Intel Core i3-2105 Full details
- Intel Pentium G3260T Full details
- AMD Phenom 9750 Full details
- Intel Core i3-2100 Full details
- AMD A6-3620 Full details
- AMD Athlon 5370 Full details
- AMD Athlon II X3 455 Full details
- AMD A6-9500 Full details
- AMD Phenom 9950 Full details
- Intel Core2 Quad Q8300 Full details
- Intel Pentium G3220 Full details
- Intel Pentium G2120 Full details
- AMD PRO A6-8570 Full details
- Intel Celeron G1850 Full details
- Intel Core2 Extreme Q9300 Full details
- Intel Pentium G2130 Full details
- Intel Pentium G3420 Full details
- AMD Phenom II X4 905e Full details
- Intel Core i3-3220T Full details
- Intel Pentium G3240 Full details
- Intel Core i3-2120 Full details
- Intel Core i3-560 Full details
- AMD A6-7400K Full details
- Intel Pentium G3240T Full details
- Intel Celeron G1820T Full details
- AMD PRO A4-8350B Full details
- AMD PRO A6-8570E Full details
- AMD Athlon II X3 435 Full details
- AMD Phenom 9550 Full details
- AMD A9-9430 Full details
- AMD PRO A6-9500E Full details
- Intel Pentium G2020 Full details
- AMD A6 PRO-7400B Full details
- AMD A6-3600 Full details
- Intel Celeron G1630 Full details
- Intel Celeron G1820 Full details
- AMD Athlon II X3 440 Full details
- AMD Phenom 9850 Full details
- AMD Phenom 9650 Full details
- Intel Pentium G2030 Full details
- AMD PRO A6-9500 Full details
- Intel Xeon X3323 Full details
- Intel Xeon E5345 Full details
- Intel Xeon L5410 Full details
- Intel Xeon E5507 Full details
- Intel Xeon E5603 Full details
- Intel Xeon E5506 Full details
- Intel Xeon L5408 Full details
- Intel Xeon E5405 Full details
Impact of Changing Screen Resolution
Increasing the resolution in this scenario will only make the bottleneck worse, as the GPU will be under even more stress, leading to lower frame rates and reduced graphical quality. It won't significantly ease the load on the already underutilized processor.
Read moreReplace graphic cards
When the graphic card becomes a system bottleneck, upgrading it can provide a significant boost in performance. Opt for a card that better matches the capabilities of your processor to get a more balanced system. This will also enable you to run games and applications at higher settings, offering a vastly improved user experience.
- NVIDIA GeForce GTX 660 Full details
- NVIDIA GeForce GTX 750 Ti Full details
- AMD Radeon HD 7850 Full details
- NVIDIA GeForce GTX 570 Full details
- AMD Radeon RX 560 Full details
- AMD Radeon Pro WX 4100 Full details
- AMD Radeon RX Vega M GL Full details
- NVIDIA GeForce GTX 750 Full details
- NVIDIA GeForce GTX 650 Ti BOOST Full details
- NVIDIA GeForce GTX 590 Full details
- NVIDIA GeForce GTX 560 Ti Full details
- AMD Radeon R9 360 Full details
- AMD Radeon HD 7790 Full details
- AMD Radeon R7 360 Full details
- NVIDIA GeForce GTX 470 Full details
- AMD Radeon R7 260X Full details
- AMD Radeon RX 560X Full details
- AMD Radeon HD 6970 Full details
- AMD Radeon R7 260 Full details
- AMD Radeon HD 6990 Full details
- AMD Radeon RX 550 Full details
- AMD Radeon HD 8950 Full details
- NVIDIA GeForce GTX 560 Full details
- NVIDIA GeForce GTX 465 Full details
- AMD Radeon HD 6950 Full details
- NVIDIA GeForce GT 1030 Full details
- NVIDIA Quadro M2000 Full details
- NVIDIA Quadro K5000 Full details
- AMD FirePro W8000 Full details
- NVIDIA GRID K520 Full details
- NVIDIA Quadro K2200 Full details
- NVIDIA Quadro P620 Full details
- NVIDIA Quadro P600 Full details
- NVIDIA Quadro K5100M Full details
- NVIDIA Tesla C2070 Full details
- AMD FirePro W7170M Full details
- AMD FirePro W4300 Full details
- NVIDIA GRID K280Q Full details
- AMD FirePro M6100 FireGL V Full details
- NVIDIA Quadro K1200 Full details
- AMD FirePro W5000 Full details
- AMD FirePro W5100 Full details
- NVIDIA Quadro 6000 Full details
- NVIDIA Quadro K4000 Full details
- AMD FirePro V9800 Full details
- NVIDIA GRID K2 Full details
- NVIDIA Quadro K5000M Full details
- NVIDIA Quadro K4100M Full details
- AMD Radeon Pro WX 3100 Full details
- AMD FirePro 3D V8800 Full details
Impact of Changing Screen Resolution
If your graphics card is bottlenecking the system, lowering the screen resolution will allow the card to handle data more efficiently, resulting in higher frames per second. However, it's worth noting that lower resolutions will require less data processing from the CPU, which could create a new bottleneck there.
Read moreOffers for NVIDIA GeForce GTX 650 Ti
Product pricing and availability information was updated as of the date and time listed, but is subject to change. If you choose to purchase a product from a retailer, the price and availability displayed on their website at the time of purchase will apply. We may earn a commission from qualifying purchases made through the links to participating retailers on this site. However, this does not impact the products or prices that are displayed or the order in which prices are listed.
Bottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.