World of Warcraft bottleneck calculator
Intel Core i5-3380M and NVIDIA GeForce GTX 775M
World of Warcraft
1280 × 720
1 monitor
1. Select game
Currently selected:
World of Warcraft
2. Select processor
Currently selected:
Intel Core i5-3380M
3. Select graphic card
Currently selected:
NVIDIA GeForce GTX 775M
4. Select resolution
Currently selected:
1280 × 720 resolution
(1 monitor)
Calculation result
Bottleneck percentage
The Intel Core i5-3380M may serve as a bottleneck for the NVIDIA GeForce GTX 775M in the World of Warcraft with 1280 × 720 and 1 monitor. Although the NVIDIA GeForce GTX 775M is engineered to manage heavy graphical tasks, the Intel Core i5-3380M might lack the processing power needed to fully unlock the NVIDIA GeForce GTX 775M capabilities. This imbalance may inhibit the overall efficiency of your system, slowing down processing and possibly compromising graphical fidelity. For a more harmonious hardware setup, upgrading to a high-performing processor that can meet the demands of current software and games is advised.
In a configuration featuring the Intel Core i5-3380M and NVIDIA GeForce GTX 775M, with a screen resolution of 1280 × 720 and 1 monitor, the system experiences a 8.7% bottleneck for World of Warcraft.
Processor and graphic card utilizations
In a computing setup featuring the Intel Core i5-3380M and NVIDIA GeForce GTX 775M, under the context of World of Warcraft with a screen resolution of 1280 × 720 and 1 monitor, the processor is expected to have an utilization rate of 83.3%, while the graphics card is projected to be utilized at 68.8%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
In gaming scenarios, your NVIDIA GeForce GTX 775M might not attain its full performance potential due to a lack of optimal utilization. This happens when the Intel Core i5-3380M fails to handle and transmit data to the NVIDIA GeForce GTX 775M at an adequate speed. As a result, the Intel Core i5-3380M will be operating at its maximum capacity, while the NVIDIA GeForce GTX 775M remains underutilized.
When it comes to bottlenecks, a processor bottleneck is generally viewed as more detrimental than a graphics card bottleneck. In cases of a processor bottleneck, the Intel Core i5-3380M capacity reaches its limits, which may adversely affect other applications running concurrently. This situation can result in diminished responsiveness and multi-tasking capabilities.
Moreover, due to the processor bottleneck, the system might not leverage the full performance capabilities of the NVIDIA GeForce GTX 775M. Consequently, there could be restrictions in graphical rendering, frame rates, and the overall gaming experience.
To visualize these bottlenecks, consider examining our heatmap. On this heatmap, the X-axis represents the CPU Score, while the Y-axis denotes the GPU Score. A quick glance at this heatmap can offer invaluable insights into potential bottlenecks within various system configurations.
By correlating your Intel Core i5-3380M CPU Score and NVIDIA GeForce GTX 775M GPU Score on the heatmap, you can acquire a more comprehensive understanding of how these components interact and where the bottlenecks might occur. Making well-informed hardware choices based on this heatmap analysis can lead to a more balanced and efficient computing setup for your specific needs.
General bottleneck calculations
The bottleneck calculations presented here are geared specifically towards in-game scenarios, providing valuable insights into how your hardware configuration could impact gaming performance. However, it's crucial to understand that bottlenecks can manifest in various types of tasks and applications. Below, you will find bottleneck calculations segmented into three primary categories: General Tasks, CPU Intensive Tasks, and GPU Intensive Tasks. This segmentation allows for a more nuanced understanding of how your system's components interact under different types of workloads.
General tasks bottleneck result
For general tasks that include web browsing, video streaming, office applications, and basic multitasking, the bottleneck result offers a comprehensive look at how well your CPU and GPU are balanced. If the bottleneck percentage leans heavily towards either the CPU or GPU, it might be beneficial to consider an upgrade for the more taxed component to ensure smoother system performance.
CPU intensive tasks bottleneck result
When it comes to CPU intensive tasks, such as video editing, 3D rendering, or scientific computing, the bottleneck calculation primarily focuses on whether your processor is powerful enough to handle these workloads efficiently. Here, a high bottleneck percentage for the CPU would indicate that your processor is the limiting factor, making tasks slower than they could be with a more robust CPU.
GPU intensive tasks bottleneck result
In scenarios involving GPU intensive tasks—like advanced gaming, graphical rendering, or video processing—the bottleneck calculation highlights the efficiency of your graphics card in relation to the overall system. A high bottleneck percentage on the GPU side would suggest that your graphics card is the limiting component, potentially hindering your system's ability to deliver optimal graphical performance.
Bottleneck solutions
Replace processor
When the processor becomes the system's bottleneck, upgrading it is often the most straightforward way to improve performance. Opting for a faster processor with more cores and higher clock speeds can effectively minimize or even eliminate the bottleneck, making it easier for your graphics card to perform to its maximum capability.
- Intel Core i7-3612QE Full details
- Intel Core i3-1005G1 Full details
- Intel Core i7-3610QE Full details
- Intel Core i7-2760QM Full details
- Intel Core i7-2820QM Full details
- Intel Core i3-8121U Full details
- Intel Core i7-2920XM Full details
- AMD Athlon 220GE Full details
- Intel Core i5-10210Y Full details
- Intel Core i7-2860QM Full details
- Intel Core i7-3612QM Full details
- Intel Core i5-6300HQ Full details
- Intel Core i7-3632QM Full details
- Intel Core i7-2960XM Full details
- Intel Core i7-3635QM Full details
- Intel Core i5-7260U Full details
- AMD Athlon Gold 3150U Full details
- Intel Core i7-2720QM Full details
- Intel Core i7-2710QE Full details
- Intel Core i7-7660U Full details
- Intel Core i3-8145UE Full details
- Intel Core i7-7567U Full details
- Intel Core i3-8109U Full details
- Intel Core i3-1000NG4 Full details
- Intel Core i7-6650U Full details
- Intel Core i5-7267U Full details
- Intel Core i7-7500U Full details
- Intel Core i5-7300U Full details
- AMD Ryzen 3 2200U Full details
- Intel Core i7-7600U Full details
- Intel Core i7-2670QM Full details
- Intel Core i5-7287U Full details
- Intel Core i7-6567U Full details
- Intel Core i7-7560U Full details
- Intel Core i3-8145U Full details
- AMD Ryzen 3 3200U Full details
- Intel Core i5-6287U Full details
- Intel Core i7-2675QM Full details
- AMD Ryzen 3 3250U Full details
- Intel Core i5-7360U Full details
- Intel Core i3-10110U Full details
- AMD Athlon 300U Full details
- AMD A8-7680 Full details
- Intel Core i3-7100H Full details
- Intel Core i7-6600U Full details
- Intel Core i5-L16G7 Full details
- Intel Core i7-6498DU Full details
- Intel Core i7-2630QM Full details
- Intel Core i3-8130U Full details
- Intel Core i7-6660U Full details
Impact of Changing Screen Resolution
Interestingly, if you're facing a processor bottleneck, altering the screen resolution may have a counterintuitive impact. Elevating the screen resolution will primarily stress the graphics card, thereby reducing the proportion of work that the processor needs to do in certain tasks. This makes it less likely that the processor will max out, though it does not replace the benefits of a processor upgrade for a balanced system.
Read moreReplace graphic cards
If the processor is causing the bottleneck, replacing the graphic card isn't generally recommended unless you're also planning to upgrade the processor. Downgrading your graphics card to better match the processor might alleviate the bottleneck, but it often results in a decrease in overall system performance, especially in graphics-heavy tasks like gaming or 3D rendering.
- NVIDIA Quadro M2200 Full details
- AMD Radeon RX 5300M Full details
- NVIDIA GeForce GTX 1050 (Max-Q Design) Full details
- NVIDIA GeForce GTX 680MX Full details
- NVIDIA GeForce MX450 Full details
- NVIDIA GeForce GTX 965M Full details
- NVIDIA GeForce GTX 880M Full details
- NVIDIA GeForce GTX 780M Full details
- AMD Radeon HD 8970M Full details
- AMD Radeon 740M Full details
- AMD Radeon HD 7970M Full details
- AMD Radeon R9 M390X Full details
- AMD Radeon HD8970M Full details
- NVIDIA GeForce GTX 960M Full details
- NVIDIA GeForce GTX 870M Full details
- NVIDIA Quadro M2000M Full details
- NVIDIA GeForce GTX 860M Full details
- NVIDIA GeForce GTX 960A Full details
- NVIDIA GeForce GTX 680M Full details
- NVIDIA Quadro M1200 Full details
- AMD Radeon R9 M470X Full details
- NVIDIA Quadro M1000M Full details
- NVIDIA GeForce GTX 675MX Full details
- AMD Radeon R9 M380 Full details
- NVIDIA Quadro M620 Full details
- NVIDIA GeForce GTX 770M Full details
- NVIDIA GeForce MX350 Full details
- NVIDIA GeForce MX330 Full details
- NVIDIA GeForce MX250 Full details
- AMD Radeon Pro WX 3200 Full details
- NVIDIA GeForce GTX 850M Full details
- NVIDIA GeForce GTX 950A Full details
- NVIDIA GeForce GTX 950M Full details
- AMD Radeon Pro WX 4150 Full details
- NVIDIA GeForce GTX 485M Full details
- NVIDIA GeForce MX150 Full details
- AMD Radeon R9 M290X Full details
- NVIDIA Quadro M600M Full details
- NVIDIA GeForce 945M Full details
- NVIDIA GeForce GTX 580M Full details
- NVIDIA GeForce GTX 765M Full details
- AMD Radeon Pro WX 4130 Full details
- NVIDIA GeForce GTX 670MX Full details
- NVIDIA GeForce GTX 675M Full details
- NVIDIA Quadro M520 Full details
- NVIDIA GeForce GTX 570M Full details
- NVIDIA GeForce MX130 Full details
- NVIDIA GeForce MX230 Full details
- AMD Radeon Pro WX 2100 Full details
- AMD Firepro W5170M Full details
Impact of Changing Screen Resolution
Increasing the screen resolution in this case will demand more from your graphics card and can make the processor's bottleneck less noticeable in some scenarios, but again, it won't entirely solve the underlying problem.
Read moreBottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.