Euro Truck Simulator 2 bottleneck calculator
AMD Ryzen 7 PRO 7840HS and NVIDIA GeForce GTX 780M
Euro Truck Simulator 2
1280 × 800
1 monitor
1. Select game
Currently selected:
Euro Truck Simulator 2
2. Select processor
Currently selected:
AMD Ryzen 7 PRO 7840HS
3. Select graphic card
Currently selected:
NVIDIA GeForce GTX 780M
4. Select resolution
Currently selected:
1280 × 800 resolution
(1 monitor)
Calculation result
Bottleneck percentage
In a system configuration featuring the AMD Ryzen 7 PRO 7840HS and NVIDIA GeForce GTX 780M, the NVIDIA GeForce GTX 780M could potentially act as a bottleneck to the AMD Ryzen 7 PRO 7840HS performance in the Euro Truck Simulator 2 with 1280 × 800 and 1 monitor. While the AMD Ryzen 7 PRO 7840HS is well-equipped to manage strenuous computational tasks, the NVIDIA GeForce GTX 780M limited graphical prowess may compromise the overall system efficiency. This disparity could lead to decreased performance and less effective utilization of system resources. To rectify this imbalance, an upgrade to a more capable graphics card that complements the AMD Ryzen 7 PRO 7840HS processing abilities is advisable.
With a screen resolution of 1280 × 800 and 1 monitor, this configuration demonstrates a 18.4% graphics card bottleneck when performing Euro Truck Simulator 2.
Processor and graphic card utilizations
In a computing setup featuring the AMD Ryzen 7 PRO 7840HS and NVIDIA GeForce GTX 780M, under the context of Euro Truck Simulator 2 with a screen resolution of 1280 × 800 and 1 monitor, the processor is expected to have an utilization rate of 61.4%, while the graphics card is projected to be utilized at 83.3%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
During gameplay scenarios, your AMD Ryzen 7 PRO 7840HS might not operate at its full potential due to the constraints imposed by the NVIDIA GeForce GTX 780M. In such cases, the NVIDIA GeForce GTX 780M may struggle to swiftly process and relay data, resulting in underutilization of the AMD Ryzen 7 PRO 7840HS. Therefore, the NVIDIA GeForce GTX 780M will be operating at its maximum capacity, leaving the AMD Ryzen 7 PRO 7840HS capabilities untapped.
In the hierarchy of bottlenecks, a graphics card bottleneck is often considered less severe than a processor bottleneck. When a graphics card bottleneck occurs, the NVIDIA GeForce GTX 780M operates at its uppermost limits, thereby allowing you to extract the best performance possible from the card. This ensures that you benefit from the full scope of the NVIDIA GeForce GTX 780M features.
One distinct advantage of not maxing out the AMD Ryzen 7 PRO 7840HS is the enhanced ability to efficiently manage other background tasks. As the AMD Ryzen 7 PRO 7840HS is not operating at full capacity while gaming, it can allocate computational resources to other ongoing activities like background processes or multitasking, without any performance trade-offs. This contributes to a smoother and more flexible overall system operation.
To gain a deeper understanding of these potential bottlenecks, consider referring to our heatmap. On the heatmap, the X-axis depicts the CPU Score, and the Y-axis signifies the GPU Score. This visualization can help identify the relationship between various CPUs and GPUs, giving you valuable insights into how to better balance your system.
By matching your AMD Ryzen 7 PRO 7840HS CPU Score with the NVIDIA GeForce GTX 780M GPU Score on the heatmap, you can more accurately assess how these components interact and pinpoint where bottlenecks may occur. Utilizing this heatmap analysis can guide you in making informed hardware decisions that lead to a more balanced and effective computing setup tailored to your specific needs.
General bottleneck calculations
The bottleneck calculations presented here are geared specifically towards in-game scenarios, providing valuable insights into how your hardware configuration could impact gaming performance. However, it's crucial to understand that bottlenecks can manifest in various types of tasks and applications. Below, you will find bottleneck calculations segmented into three primary categories: General Tasks, CPU Intensive Tasks, and GPU Intensive Tasks. This segmentation allows for a more nuanced understanding of how your system's components interact under different types of workloads.
General tasks bottleneck result
For general tasks that include web browsing, video streaming, office applications, and basic multitasking, the bottleneck result offers a comprehensive look at how well your CPU and GPU are balanced. If the bottleneck percentage leans heavily towards either the CPU or GPU, it might be beneficial to consider an upgrade for the more taxed component to ensure smoother system performance.
CPU intensive tasks bottleneck result
When it comes to CPU intensive tasks, such as video editing, 3D rendering, or scientific computing, the bottleneck calculation primarily focuses on whether your processor is powerful enough to handle these workloads efficiently. Here, a high bottleneck percentage for the CPU would indicate that your processor is the limiting factor, making tasks slower than they could be with a more robust CPU.
GPU intensive tasks bottleneck result
In scenarios involving GPU intensive tasks—like advanced gaming, graphical rendering, or video processing—the bottleneck calculation highlights the efficiency of your graphics card in relation to the overall system. A high bottleneck percentage on the GPU side would suggest that your graphics card is the limiting component, potentially hindering your system's ability to deliver optimal graphical performance.
Bottleneck solutions
Replace processor
If your graphic card is causing the bottleneck but you're considering replacing your processor, reconsider this approach. Unless your processor is already on the verge of becoming outdated, upgrading it might not offer a significant performance boost, particularly in graphics-heavy tasks.
- AMD Ryzen 5 4600HS Full details
- Intel Core i7-1260U Full details
- AMD Ryzen 5 4600H Full details
- Intel Core i3-1220P Full details
- Intel Core i7-10870H Full details
- AMD Ryzen 5 PRO 5675U Full details
- Intel Core i9-10880H Full details
- AMD Ryzen 7 4700U Full details
- AMD Ryzen 5 4600U Full details
- Intel Core i7-1255U Full details
- Intel Core i9-9880H Full details
- Intel Core 7 150U Full details
- Intel Core i9-9980HK Full details
- Intel Core i5-1334U Full details
- Intel Core i3-1315U Full details
- AMD Ryzen 5 PRO 4650U Full details
- AMD Ryzen 3 PRO 7330U Full details
- AMD Ryzen 5 5500U Full details
- AMD Ryzen 3 PRO 5475U Full details
- AMD Ryzen 3 5425U Full details
- Intel Xeon E-2186M Full details
- AMD Ryzen 5 5500H Full details
- Intel Core i7-11370H Full details
- Intel Xeon E-2276M Full details
- Intel Core i7-10850H Full details
- Intel Core i7-11375H Full details
- Intel Core i7-10750H Full details
- Intel Core i7-8700B Full details
- Intel Core i7-1250U Full details
- Intel Core i9-8950HK Full details
- Intel Core i7-9750HF Full details
- Intel Core i7-1195G7 Full details
- Intel Core i7-9750H Full details
- Intel Xeon E-2176M Full details
- Intel Core i5-11300H Full details
- AMD Ryzen 5 4500U Full details
- Intel Core i3-1215U Full details
- Intel Core i5-11320H Full details
- Intel Core i7-9850H Full details
- AMD Ryzen 3 5400U Full details
- AMD Ryzen 3 7330U Full details
- AMD Ryzen 3 PRO 5450U Full details
- Intel Core i5-1230U Full details
- Intel Core i5-10500H Full details
- Intel Core i7-1165G7 Full details
- Intel Core i7-8750H Full details
- Intel Core i3-1125G4 Full details
- AMD Ryzen 3 5300U Full details
- Intel Core i5-1135G7 Full details
- Intel Core i5-1145G7 Full details
Impact of Changing Screen Resolution
Increasing the resolution in this scenario will only make the bottleneck worse, as the GPU will be under even more stress, leading to lower frame rates and reduced graphical quality. It won't significantly ease the load on the already underutilized processor.
Read moreReplace graphic cards
When the graphic card becomes a system bottleneck, upgrading it can provide a significant boost in performance. Opt for a card that better matches the capabilities of your processor to get a more balanced system. This will also enable you to run games and applications at higher settings, offering a vastly improved user experience.
- NVIDIA GeForce RTX 3050 Ti Full details
- NVIDIA GeForce GTX 1660 Ti Full details
- NVIDIA GeForce RTX 2060 (Max-Q Design) Full details
- NVIDIA RTX A1000 Full details
- NVIDIA GeForce GTX 1070 (Max-Q Design) Full details
- AMD Radeon Pro 5600M Full details
- AMD Radeon RX 6550M Full details
- NVIDIA GeForce GTX 1660 Ti (Max-Q Design) Full details
- AMD Radeon RX 5600M Full details
- NVIDIA GeForce RTX 3050 Full details
- NVIDIA Quadro RTX 3000 (Max-Q Design) Full details
- AMD Radeon RX 6500M Full details
- NVIDIA GeForce GTX 1060 (Max-Q Design) Full details
- NVIDIA GeForce GTX 1060 Full details
- NVIDIA GeForce RTX 2050 Full details
- NVIDIA GeForce GTX 1650 Ti Full details
- NVIDIA Quadro T2000 Full details
- NVIDIA GeForce GTX 980M Full details
- NVIDIA GeForce GTX 1650 Full details
- AMD Radeon Pro 5500M Full details
- NVIDIA Quadro T2000 (Max-Q Design) Full details
- NVIDIA Quadro M5000M Full details
- AMD Radeon 780M Full details
- NVIDIA Quadro T1000 Full details
- NVIDIA Quadro P3000 Full details
- NVIDIA Quadro T1000 (Max-Q Design) Full details
- NVIDIA RTX A500 Full details
- NVIDIA Quadro M4000M Full details
- NVIDIA GeForce GTX 1650 Ti (Max-Q Design) Full details
- NVIDIA GeForce GTX 1050 Ti Full details
- AMD Radeon 760M Full details
- NVIDIA GeForce MX570 A Full details
- AMD Radeon Pro 5300M Full details
- NVIDIA GeForce GTX 1650 (Max-Q Design) Full details
- NVIDIA GeForce GTX 970M Full details
- NVIDIA GeForce MX570 Full details
- NVIDIA GeForce GTX 1050 Ti (Max-Q Design) Full details
- AMD Radeon RX 5500M Full details
- NVIDIA Quadro M3000M Full details
- AMD Radeon R9 M395X Full details
- AMD Radeon R9 M295X Full details
- AMD Radeon R9 M395 Full details
- NVIDIA GeForce MX550 Full details
- NVIDIA GeForce GTX 1050 Full details
- AMD Radeon RX 5300M Full details
- NVIDIA Quadro M2200 Full details
- NVIDIA GeForce GTX 680MX Full details
- NVIDIA GeForce GTX 1050 (Max-Q Design) Full details
- AMD Radeon HD 8970M Full details
- NVIDIA GeForce GTX 880M Full details
Impact of Changing Screen Resolution
If your graphics card is bottlenecking the system, lowering the screen resolution will allow the card to handle data more efficiently, resulting in higher frames per second. However, it's worth noting that lower resolutions will require less data processing from the CPU, which could create a new bottleneck there.
Read moreBottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.