GreedFall bottleneck calculator
Intel Atom N2600 and NVIDIA GeForce RTX 2060
GreedFall
3840 × 2160
1 monitor
1. Select game
Currently selected:
GreedFall
2. Select processor
Currently selected:
Intel Atom N2600
3. Select graphic card
Currently selected:
NVIDIA GeForce RTX 2060
4. Select resolution
Currently selected:
3840 × 2160 resolution
(1 monitor)
Calculation result
Bottleneck percentage
The Intel Atom N2600 may serve as a bottleneck for the NVIDIA GeForce RTX 2060 in the GreedFall with 3840 × 2160 and 1 monitor. Although the NVIDIA GeForce RTX 2060 is engineered to manage heavy graphical tasks, the Intel Atom N2600 might lack the processing power needed to fully unlock the NVIDIA GeForce RTX 2060 capabilities. This imbalance may inhibit the overall efficiency of your system, slowing down processing and possibly compromising graphical fidelity. For a more harmonious hardware setup, upgrading to a high-performing processor that can meet the demands of current software and games is advised.
In a configuration featuring the Intel Atom N2600 and NVIDIA GeForce RTX 2060, with a screen resolution of 3840 × 2160 and 1 monitor, the system experiences a 13.5% bottleneck for GreedFall.
Processor and graphic card utilizations
In a computing setup featuring the Intel Atom N2600 and NVIDIA GeForce RTX 2060, under the context of GreedFall with a screen resolution of 3840 × 2160 and 1 monitor, the processor is expected to have an utilization rate of 83.1%, while the graphics card is projected to be utilized at 65.1%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
In gaming scenarios, your NVIDIA GeForce RTX 2060 might not attain its full performance potential due to a lack of optimal utilization. This happens when the Intel Atom N2600 fails to handle and transmit data to the NVIDIA GeForce RTX 2060 at an adequate speed. As a result, the Intel Atom N2600 will be operating at its maximum capacity, while the NVIDIA GeForce RTX 2060 remains underutilized.
When it comes to bottlenecks, a processor bottleneck is generally viewed as more detrimental than a graphics card bottleneck. In cases of a processor bottleneck, the Intel Atom N2600 capacity reaches its limits, which may adversely affect other applications running concurrently. This situation can result in diminished responsiveness and multi-tasking capabilities.
Moreover, due to the processor bottleneck, the system might not leverage the full performance capabilities of the NVIDIA GeForce RTX 2060. Consequently, there could be restrictions in graphical rendering, frame rates, and the overall gaming experience.
To visualize these bottlenecks, consider examining our heatmap. On this heatmap, the X-axis represents the CPU Score, while the Y-axis denotes the GPU Score. A quick glance at this heatmap can offer invaluable insights into potential bottlenecks within various system configurations.
By correlating your Intel Atom N2600 CPU Score and NVIDIA GeForce RTX 2060 GPU Score on the heatmap, you can acquire a more comprehensive understanding of how these components interact and where the bottlenecks might occur. Making well-informed hardware choices based on this heatmap analysis can lead to a more balanced and efficient computing setup for your specific needs.
General bottleneck calculations
The bottleneck calculations presented here are geared specifically towards in-game scenarios, providing valuable insights into how your hardware configuration could impact gaming performance. However, it's crucial to understand that bottlenecks can manifest in various types of tasks and applications. Below, you will find bottleneck calculations segmented into three primary categories: General Tasks, CPU Intensive Tasks, and GPU Intensive Tasks. This segmentation allows for a more nuanced understanding of how your system's components interact under different types of workloads.
General tasks bottleneck result
For general tasks that include web browsing, video streaming, office applications, and basic multitasking, the bottleneck result offers a comprehensive look at how well your CPU and GPU are balanced. If the bottleneck percentage leans heavily towards either the CPU or GPU, it might be beneficial to consider an upgrade for the more taxed component to ensure smoother system performance.
CPU intensive tasks bottleneck result
When it comes to CPU intensive tasks, such as video editing, 3D rendering, or scientific computing, the bottleneck calculation primarily focuses on whether your processor is powerful enough to handle these workloads efficiently. Here, a high bottleneck percentage for the CPU would indicate that your processor is the limiting factor, making tasks slower than they could be with a more robust CPU.
GPU intensive tasks bottleneck result
In scenarios involving GPU intensive tasks—like advanced gaming, graphical rendering, or video processing—the bottleneck calculation highlights the efficiency of your graphics card in relation to the overall system. A high bottleneck percentage on the GPU side would suggest that your graphics card is the limiting component, potentially hindering your system's ability to deliver optimal graphical performance.
Bottleneck solutions
Replace processor
When the processor becomes the system's bottleneck, upgrading it is often the most straightforward way to improve performance. Opting for a faster processor with more cores and higher clock speeds can effectively minimize or even eliminate the bottleneck, making it easier for your graphics card to perform to its maximum capability.
- Intel Core i3-2350M Full details
- AMD A6-3410MX Full details
- Intel Core i3-2348M Full details
- AMD A6-9220 Full details
- Intel Core i3-4012Y Full details
- Intel Celeron 3855U Full details
- Intel Core i3-3227U Full details
- Intel Atom x7-Z8750 Full details
- Intel Core2 Extreme X9000 Full details
- AMD A9-9420e Full details
- Intel Celeron 1005M Full details
- Intel Core2 Duo E8435 Full details
- Intel Core2 Extreme X7900 Full details
- Intel Celeron N3350 Full details
- Intel Core2 Duo E8135 Full details
- AMD A6-9200 Full details
- Intel Celeron 3215U Full details
- AMD E2-6110 Full details
- Intel Core i3-2312M Full details
- AMD PRO A4-4350B Full details
- Intel Pentium N3520 Full details
- Intel Core2 Duo P9700 Full details
- AMD E2-3800 Full details
- Intel Core i3-370M Full details
- AMD A8-7050 Full details
- AMD QC-4000 Full details
- AMD A6-5357M Full details
- Intel Core2 Extreme X9100 Full details
- Intel Celeron N3160 Full details
- Intel Pentium 3805U Full details
- Intel Core i7-640UM Full details
- Intel Core2 Duo T9900 Full details
- Intel Pentium N3530 Full details
- Intel Atom Z3795 Full details
- AMD A6-3400M Full details
- Intel Celeron N3150 Full details
- Intel Core i7-680UM Full details
- Intel Core i3-380M Full details
- Intel Core i5-430M Full details
- Intel Core i5-2537M Full details
- AMD A4-9125 Full details
- Intel Pentium N3540 Full details
- AMD A6-9210 Full details
- Intel Core2 Duo T9800 Full details
- AMD A6-5350M Full details
- Intel Core i3-2310M Full details
- Intel Core i3-3217U Full details
- Intel Core i3-2330M Full details
- AMD A4-9120 Full details
- AMD Phenom II N830 Full details
Impact of Changing Screen Resolution
Interestingly, if you're facing a processor bottleneck, altering the screen resolution may have a counterintuitive impact. Elevating the screen resolution will primarily stress the graphics card, thereby reducing the proportion of work that the processor needs to do in certain tasks. This makes it less likely that the processor will max out, though it does not replace the benefits of a processor upgrade for a balanced system.
Read moreReplace graphic cards
If the processor is causing the bottleneck, replacing the graphic card isn't generally recommended unless you're also planning to upgrade the processor. Downgrading your graphics card to better match the processor might alleviate the bottleneck, but it often results in a decrease in overall system performance, especially in graphics-heavy tasks like gaming or 3D rendering.
- Intel Arc A770M Full details
- NVIDIA GeForce RTX 2070 (Max-Q Design) Full details
- AMD Radeon RX 7600M XT Full details
- NVIDIA GeForce GTX 1080 (Max-Q Design) Full details
- NVIDIA Quadro RTX 3000 Full details
- NVIDIA RTX A2000 Full details
- NVIDIA GeForce GTX 1070 Full details
- NVIDIA GeForce RTX 3050 Ti Full details
- NVIDIA GeForce GTX 1660 Ti Full details
- NVIDIA GeForce RTX 2060 (Max-Q Design) Full details
- NVIDIA RTX A1000 Full details
- NVIDIA GeForce GTX 1070 (Max-Q Design) Full details
- AMD Radeon Pro 5600M Full details
- AMD Radeon RX 6550M Full details
- NVIDIA GeForce GTX 1660 Ti (Max-Q Design) Full details
- AMD Radeon RX 5600M Full details
- NVIDIA GeForce RTX 3050 Full details
- NVIDIA Quadro RTX 3000 (Max-Q Design) Full details
- AMD Radeon RX 6500M Full details
- NVIDIA GeForce GTX 1060 (Max-Q Design) Full details
- NVIDIA GeForce GTX 1060 Full details
- NVIDIA GeForce RTX 2050 Full details
- NVIDIA GeForce GTX 1650 Ti Full details
- NVIDIA Quadro T2000 Full details
- NVIDIA GeForce GTX 980M Full details
- NVIDIA GeForce GTX 1650 Full details
- AMD Radeon Pro 5500M Full details
- NVIDIA Quadro T2000 (Max-Q Design) Full details
- NVIDIA Quadro M5000M Full details
- AMD Radeon 780M Full details
- NVIDIA Quadro T1000 Full details
- NVIDIA Quadro P3000 Full details
- NVIDIA Quadro T1000 (Max-Q Design) Full details
- NVIDIA RTX A500 Full details
- NVIDIA Quadro M4000M Full details
- NVIDIA GeForce GTX 1650 Ti (Max-Q Design) Full details
- NVIDIA GeForce GTX 1050 Ti Full details
- NVIDIA GeForce GTX 1650 (Max-Q Design) Full details
- AMD Radeon Pro 5300M Full details
- NVIDIA GeForce MX570 A Full details
- AMD Radeon 760M Full details
- NVIDIA GeForce MX570 Full details
- NVIDIA GeForce GTX 970M Full details
- NVIDIA Quadro M3000M Full details
- AMD Radeon RX 5500M Full details
- NVIDIA GeForce GTX 1050 Ti (Max-Q Design) Full details
- AMD Radeon R9 M395X Full details
- AMD Radeon R9 M295X Full details
- AMD Radeon R9 M395 Full details
- NVIDIA GeForce MX550 Full details
Impact of Changing Screen Resolution
Increasing the screen resolution in this case will demand more from your graphics card and can make the processor's bottleneck less noticeable in some scenarios, but again, it won't entirely solve the underlying problem.
Read moreBottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.