Call of Duty: Modern Warfare 2 bottleneck calculator
AMD Sempron 2200+ and AMD Radeon R5 PRO A6-9500B R5, 6 COMPUTE CORES
Call of Duty: Modern Warfare 2
1680 × 1050
1 monitor
1. Select game
Currently selected:
Call of Duty: Modern Warfare 2
2. Select processor
Currently selected:
AMD Sempron 2200+
3. Select graphic card
Currently selected:
AMD Radeon R5 PRO A6-9500B R5, 6 COMPUTE CORES
4. Select resolution
Currently selected:
1680 × 1050 resolution
(1 monitor)
Calculation result
Bottleneck percentage
The AMD Sempron 2200+ may serve as a bottleneck for the AMD Radeon R5 PRO A6-9500B R5, 6 COMPUTE CORES in the Call of Duty: Modern Warfare 2 with 1680 × 1050 and 1 monitor. Although the AMD Radeon R5 PRO A6-9500B R5, 6 COMPUTE CORES is engineered to manage heavy graphical tasks, the AMD Sempron 2200+ might lack the processing power needed to fully unlock the AMD Radeon R5 PRO A6-9500B R5, 6 COMPUTE CORES capabilities. This imbalance may inhibit the overall efficiency of your system, slowing down processing and possibly compromising graphical fidelity. For a more harmonious hardware setup, upgrading to a high-performing processor that can meet the demands of current software and games is advised.
In a configuration featuring the AMD Sempron 2200+ and AMD Radeon R5 PRO A6-9500B R5, 6 COMPUTE CORES, with a screen resolution of 1680 × 1050 and 1 monitor, the system experiences a 5.4% bottleneck for Call of Duty: Modern Warfare 2.
Processor and graphic card utilizations
In a computing setup featuring the AMD Sempron 2200+ and AMD Radeon R5 PRO A6-9500B R5, 6 COMPUTE CORES, under the context of Call of Duty: Modern Warfare 2 with a screen resolution of 1680 × 1050 and 1 monitor, the processor is expected to have an utilization rate of 81.8%, while the graphics card is projected to be utilized at 67.4%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
In gaming scenarios, your AMD Radeon R5 PRO A6-9500B R5, 6 COMPUTE CORES might not attain its full performance potential due to a lack of optimal utilization. This happens when the AMD Sempron 2200+ fails to handle and transmit data to the AMD Radeon R5 PRO A6-9500B R5, 6 COMPUTE CORES at an adequate speed. As a result, the AMD Sempron 2200+ will be operating at its maximum capacity, while the AMD Radeon R5 PRO A6-9500B R5, 6 COMPUTE CORES remains underutilized.
When it comes to bottlenecks, a processor bottleneck is generally viewed as more detrimental than a graphics card bottleneck. In cases of a processor bottleneck, the AMD Sempron 2200+ capacity reaches its limits, which may adversely affect other applications running concurrently. This situation can result in diminished responsiveness and multi-tasking capabilities.
Moreover, due to the processor bottleneck, the system might not leverage the full performance capabilities of the AMD Radeon R5 PRO A6-9500B R5, 6 COMPUTE CORES. Consequently, there could be restrictions in graphical rendering, frame rates, and the overall gaming experience.
To visualize these bottlenecks, consider examining our heatmap. On this heatmap, the X-axis represents the CPU Score, while the Y-axis denotes the GPU Score. A quick glance at this heatmap can offer invaluable insights into potential bottlenecks within various system configurations.
By correlating your AMD Sempron 2200+ CPU Score and AMD Radeon R5 PRO A6-9500B R5, 6 COMPUTE CORES GPU Score on the heatmap, you can acquire a more comprehensive understanding of how these components interact and where the bottlenecks might occur. Making well-informed hardware choices based on this heatmap analysis can lead to a more balanced and efficient computing setup for your specific needs.
General bottleneck calculations
The bottleneck calculations presented here are geared specifically towards in-game scenarios, providing valuable insights into how your hardware configuration could impact gaming performance. However, it's crucial to understand that bottlenecks can manifest in various types of tasks and applications. Below, you will find bottleneck calculations segmented into three primary categories: General Tasks, CPU Intensive Tasks, and GPU Intensive Tasks. This segmentation allows for a more nuanced understanding of how your system's components interact under different types of workloads.
General tasks bottleneck result
For general tasks that include web browsing, video streaming, office applications, and basic multitasking, the bottleneck result offers a comprehensive look at how well your CPU and GPU are balanced. If the bottleneck percentage leans heavily towards either the CPU or GPU, it might be beneficial to consider an upgrade for the more taxed component to ensure smoother system performance.
CPU intensive tasks bottleneck result
When it comes to CPU intensive tasks, such as video editing, 3D rendering, or scientific computing, the bottleneck calculation primarily focuses on whether your processor is powerful enough to handle these workloads efficiently. Here, a high bottleneck percentage for the CPU would indicate that your processor is the limiting factor, making tasks slower than they could be with a more robust CPU.
GPU intensive tasks bottleneck result
In scenarios involving GPU intensive tasks—like advanced gaming, graphical rendering, or video processing—the bottleneck calculation highlights the efficiency of your graphics card in relation to the overall system. A high bottleneck percentage on the GPU side would suggest that your graphics card is the limiting component, potentially hindering your system's ability to deliver optimal graphical performance.
Bottleneck solutions
Replace processor
When the processor becomes the system's bottleneck, upgrading it is often the most straightforward way to improve performance. Opting for a faster processor with more cores and higher clock speeds can effectively minimize or even eliminate the bottleneck, making it easier for your graphics card to perform to its maximum capability.
- AMD Sempron LE-1250 Full details
- AMD Athlon 64 3200+ Full details
- AMD Sempron 3300+ Full details
- AMD Sempron LE-1100 Full details
- Intel Pentium 4 Full details
- AMD Athlon 64 3400+ Full details
- Intel Pentium 4 Full details
- Intel Pentium 4 Full details
- AMD Athlon 2850e Full details
- Intel Core Duo T2050 Full details
- AMD Athlon 64 3000+ Full details
- AMD Athlon 64 4000+ Full details
- AMD Athlon II 170u Full details
- AMD Sempron LE-1200 Full details
- AMD Athlon II 160u Full details
- Intel Pentium 4 Full details
- AMD Sempron 3200+ Full details
- AMD Sempron LE-1150 Full details
- Intel Celeron D 356 Full details
- AMD Sempron 2600+ Full details
- Intel Pentium 4 Full details
- AMD Athlon XP 3000+ Full details
- AMD Athlon 2650e Full details
- Intel Celeron D 352 Full details
- Intel Celeron 430 Full details
- AMD Sempron 3000+ Full details
- AMD Athlon 64 3800+ Full details
- AMD Sempron 3400+ Full details
- AMD Athlon 64 2800+ Full details
- AMD Sempron 3100+ Full details
- Intel Pentium 4 Full details
- AMD Sempron 3500+ Full details
- Intel Celeron D 347 Full details
- Intel Celeron 420 Full details
- Intel Pentium 4 Full details
- AMD Sempron 2800+ Full details
- Intel Atom D2500 Full details
- Intel Mobile Pentium 4 Full details
- Intel Pentium 4 Full details
- AMD Sempron 2500+ Full details
- AMD Sempron 2400+ Full details
- Intel Atom D425 Full details
- AMD Athlon XP 1800+ Full details
- AMD Athlon XP 2000+ Full details
- Intel Celeron Full details
- Intel Atom E3815 Full details
- Intel Atom D410 Full details
- AMD Athlon XP 1700+ Full details
- Intel Atom 230 Full details
- Intel Pentium 4 Full details
Impact of Changing Screen Resolution
Interestingly, if you're facing a processor bottleneck, altering the screen resolution may have a counterintuitive impact. Elevating the screen resolution will primarily stress the graphics card, thereby reducing the proportion of work that the processor needs to do in certain tasks. This makes it less likely that the processor will max out, though it does not replace the benefits of a processor upgrade for a balanced system.
Read moreReplace graphic cards
If the processor is causing the bottleneck, replacing the graphic card isn't generally recommended unless you're also planning to upgrade the processor. Downgrading your graphics card to better match the processor might alleviate the bottleneck, but it often results in a decrease in overall system performance, especially in graphics-heavy tasks like gaming or 3D rendering.
- NVIDIA GeForce 7900 GTX Full details
- AMD Radeon HD 3850 Full details
- AMD Radeon R5 Opteron X3216 Full details
- AMD Radeon HD 8650D Full details
- NVIDIA GeForce GT 330 Full details
- AMD Radeon HD 6550D Full details
- AMD Radeon HD 8550G Full details
- NVIDIA GeForce 8800 GTS Full details
- NVIDIA GeForce GT 420 Full details
- AMD Radeon HD 8610G Full details
- AMD Radeon HD 3850 AGP Full details
- AMD Radeon HD 8570D Full details
- AMD Radeon R5 M320 Full details
- AMD Radeon R5 M240 Full details
- AMD Radeon HD 7560D Full details
- AMD Radeon HD 7640G Full details
- AMD Radeon 3020e Full details
- NVIDIA GeForce GT 625 Full details
- AMD Radeon HD 8510G Full details
- AMD Radeon HD 7620G Full details
- AMD Radeon HD 8470D Full details
- AMD Radeon HD 5550 Full details
- NVIDIA GeForce GT 620 Full details
- AMD Radeon HD 4670 Full details
- NVIDIA GeForce GT 130 Full details
- AMD Radeon HD 8450G Full details
- NVIDIA GeForce 7950 GT Full details
- AMD Radeon HD 6530D Full details
- AMD Radeon R5 235 Full details
- AMD Radeon R4 Full details
- AMD Radeon HD 7540D Full details
- AMD Radeon R5 310 Full details
- NVIDIA GeForce GT 705 Full details
- NVIDIA GeForce 8800 GS Full details
- NVIDIA GeForce 9600 GSO 512 Full details
- NVIDIA GeForce 9600 GSO Full details
- AMD Radeon HD 7600G Full details
- NVIDIA GeForce 605 Full details
- AMD Radeon HD 7520G Full details
- AMD Radeon HD 8370D Full details
- NVIDIA Quadro FX 1800 Full details
- NVIDIA Quadro FX 2800M Full details
- AMD FirePro M2000 Full details
- NVIDIA Quadro FX 4600 Full details
- NVIDIA Quadro 410 Full details
- NVIDIA Quadro FX 3700M Full details
- NVIDIA Quadro FX 2700M Full details
- NVIDIA Quadro FX 3700 Full details
- AMD FirePro 3D V3750 Full details
- AMD FirePro V3800 Full details
Impact of Changing Screen Resolution
Increasing the screen resolution in this case will demand more from your graphics card and can make the processor's bottleneck less noticeable in some scenarios, but again, it won't entirely solve the underlying problem.
Read moreBottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.