Dark Souls III bottleneck calculator
Intel Core2 Duo E4500 and Intel UHD Graphics 620
Dark Souls III
1360 × 768
1 monitor
1. Select game
Currently selected:
Dark Souls III
2. Select processor
Currently selected:
Intel Core2 Duo E4500
3. Select graphic card
Currently selected:
Intel UHD Graphics 620
4. Select resolution
Currently selected:
1360 × 768 resolution
(1 monitor)
Calculation result
Bottleneck percentage
When configuring a high-performance computing setup, it's imperative to ensure that each hardware component is well-matched with its counterparts to provide seamless and optimal system performance. In the case of the Intel Core2 Duo E4500 and Intel UHD Graphics 620 in the Dark Souls III with 1360 × 768 and 1 monitor, it appears that hardware compatibility has been achieved superbly, as evidenced by the calculated bottleneck percentage of 0%.
To elaborate, a bottleneck occurs when one component restricts the maximum efficiency of another, leading to suboptimal performance and reduced system effectiveness. However, in this configuration, that is not a concern. Any bottleneck percentage below 5% is generally deemed insignificant, and our current bottleneck value sits at 0%, which means you can expect superior system performance.
Processor and graphic card utilizations
In a computing setup featuring the Intel Core2 Duo E4500 and Intel UHD Graphics 620, under the context of Dark Souls III with a screen resolution of 1360 × 768 and 1 monitor, the processor is expected to have an utilization rate of 82.5%, while the graphics card is projected to be utilized at 80.1%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
The heatmap serves as a graphical representation to further confirm the compatibility between the Intel Core2 Duo E4500 and Intel UHD Graphics 620. On this heatmap, the x-axis corresponds to the CPU Score, and the y-axis corresponds to the GPU Score. In a perfectly balanced system such as this, the intersection point of the Intel Core2 Duo E4500 and Intel UHD Graphics 620 will fall within the "no bottleneck zone."
The "no bottleneck zone" is an area on the heatmap where the hardware components are not only compatible but are also optimally matched to provide peak system performance. When the intersection of the CPU and GPU scores resides in this zone, it is a strong indicator that the system is balanced and will deliver excellent performance for Dark Souls III. The presence of both the Intel Core2 Duo E4500 and Intel UHD Graphics 620 in this zone confirms that neither component will hinder the performance of the other, leading to a seamless and highly efficient computing experience.
Mapping your Intel Core2 Duo E4500 CPU Score against the Intel UHD Graphics 620 GPU Score can provide a comprehensive view of how these components interact and where bottlenecks are most likely to happen. Leveraging this heatmap data could guide you in making more balanced hardware selections suitable for your specific computing needs.
General bottleneck calculations
The bottleneck calculations presented here are geared specifically towards in-game scenarios, providing valuable insights into how your hardware configuration could impact gaming performance. However, it's crucial to understand that bottlenecks can manifest in various types of tasks and applications. Below, you will find bottleneck calculations segmented into three primary categories: General Tasks, CPU Intensive Tasks, and GPU Intensive Tasks. This segmentation allows for a more nuanced understanding of how your system's components interact under different types of workloads.
General tasks bottleneck result
For general tasks that include web browsing, video streaming, office applications, and basic multitasking, the bottleneck result offers a comprehensive look at how well your CPU and GPU are balanced. If the bottleneck percentage leans heavily towards either the CPU or GPU, it might be beneficial to consider an upgrade for the more taxed component to ensure smoother system performance.
CPU intensive tasks bottleneck result
When it comes to CPU intensive tasks, such as video editing, 3D rendering, or scientific computing, the bottleneck calculation primarily focuses on whether your processor is powerful enough to handle these workloads efficiently. Here, a high bottleneck percentage for the CPU would indicate that your processor is the limiting factor, making tasks slower than they could be with a more robust CPU.
GPU intensive tasks bottleneck result
In scenarios involving GPU intensive tasks—like advanced gaming, graphical rendering, or video processing—the bottleneck calculation highlights the efficiency of your graphics card in relation to the overall system. A high bottleneck percentage on the GPU side would suggest that your graphics card is the limiting component, potentially hindering your system's ability to deliver optimal graphical performance.
Bottleneck solutions
Replace processor
If your graphic card is causing the bottleneck but you're considering replacing your processor, reconsider this approach. Unless your processor is already on the verge of becoming outdated, upgrading it might not offer a significant performance boost, particularly in graphics-heavy tasks.
- AMD E2-3200 Full details
- Intel Pentium E5400 Full details
- AMD Athlon II X2 215 Full details
- Intel Core2 Duo E8135 Full details
- AMD Athlon 7750 Full details
- Intel Pentium Extreme Edition 965 Full details
- AMD Athlon 5200B Full details
- Intel Celeron E3200 Full details
- AMD Athlon 64 X2 5200+ Full details
- AMD Athlon 5050e Full details
- Intel Pentium E2220 Full details
- Intel Celeron E3400 Full details
- AMD Athlon 5000B Full details
- Intel Core2 Duo E4600 Full details
- AMD Athlon 5200 Full details
- AMD Athlon 5000 Full details
- Intel Core2 Duo E6550 Full details
- Intel Pentium G620T Full details
- Intel Pentium E5300 Full details
- AMD Athlon 7550 Full details
- AMD Athlon 64 X2 5400+ Full details
- AMD Athlon 64 X2 5600+ Full details
- Intel Core2 Duo E4700 Full details
- AMD Athlon 5400B Full details
- Intel Pentium E5200 Full details
- AMD Athlon 64 X2 6000+ Full details
- Intel Celeron E3500 Full details
- Intel Core2 Duo E6600 Full details
- AMD A4-3300 Full details
- AMD Athlon II X2 4400e Full details
- Intel Core2 Duo E7300 Full details
- AMD Athlon 64 FX-60 Full details
- AMD Athlon 4450B Full details
- AMD Athlon II X2 260u Full details
- AMD Athlon 64 X2 4200+ Full details
- Intel Core2 Duo E6320 Full details
- AMD Athlon 64 X2 4600+ Full details
- Intel Pentium E2200 Full details
- Intel Celeron E1400 Full details
- Intel Core2 Duo E6420 Full details
- Intel Core2 Duo E6400 Full details
- AMD Athlon 64 X2 5000+ Full details
- AMD Athlon 4850e Full details
- Intel Xeon 5160 Full details
- Intel Xeon 3060 Full details
- Intel Xeon 5140 Full details
- Intel Xeon 3065 Full details
- Intel Xeon Full details
- Intel Xeon 5150 Full details
- AMD Opteron 180 Full details
Impact of Changing Screen Resolution
Increasing the resolution in this scenario will only make the bottleneck worse, as the GPU will be under even more stress, leading to lower frame rates and reduced graphical quality. It won't significantly ease the load on the already underutilized processor.
Read moreReplace graphic cards
When the graphic card becomes a system bottleneck, upgrading it can provide a significant boost in performance. Opt for a card that better matches the capabilities of your processor to get a more balanced system. This will also enable you to run games and applications at higher settings, offering a vastly improved user experience.
- AMD Radeon HD 4850 X2 Full details
- AMD Radeon Vega 3 Athlon 3000G Full details
- AMD Radeon R7 340 Full details
- AMD Radeon 530 Full details
- AMD Radeon HD 6750 Full details
- AMD Radeon R7 A12-9730P Radeon Full details
- AMD Radeon R7 250 Full details
- AMD Radeon R7 M460 Full details
- AMD Radeon 535 Full details
- AMD Radeon R7 A12-9800 Radeon Full details
- AMD Radeon 625 Full details
- AMD Radeon R7 M350 Full details
- AMD Radeon R7 430 Full details
- AMD Radeon R7 M465 Full details
- NVIDIA GeForce GT 545 Full details
- AMD Radeon R7 A10-7870K Full details
- AMD Radeon HD 7670 Full details
- AMD Radeon R7 A10 PRO-7850B Full details
- AMD Radeon Vega 3 Full details
- AMD Radeon R7 PRO A8-9600 Full details
- AMD Radeon 620 Full details
- AMD Radeon R7 PRO A10-8770 Full details
- AMD Radeon R7 M440 Full details
- AMD Radeon R7 240 Full details
- AMD Radeon R7 PRO A12-8870 Full details
- AMD Radeon HD 4770 Full details
- AMD Radeon R7 A8-8650 Full details
- AMD Radeon R7 A12-9800E Radeon Full details
- AMD Radeon R5 430 Full details
- AMD Radeon R7 PRO A12-8870E Full details
- AMD Radeon R5 A6-9500 Radeon R5, 8 COMPUTE CORES Full details
- AMD Radeon R7 A10-7860K Full details
- AMD Radeon R7 A10-9700 Radeon Full details
- AMD Radeon HD 4850 Full details
- AMD Radeon R5 340 Full details
- AMD Radeon HD 8570 Full details
- AMD Radeon R7 M445 Full details
- AMD Radeon R7 PRO A10-8850B Full details
- AMD Radeon R7 PRO A12-9800E Full details
- AMD Radeon R7 A10-7850K Full details
- AMD Radeon R7 A10-9700E Radeon Full details
- AMD FirePro M4170 Full details
- NVIDIA Quadro 3000M Full details
- NVIDIA Quadro K2000M Full details
- AMD FirePro W4170M Full details
- AMD Firepro M4100 Full details
- NVIDIA Quadro K1100M Full details
- NVIDIA GRID K220Q Full details
- NVIDIA Quadro 2000 Full details
- AMD FirePro M4150 Full details
Impact of Changing Screen Resolution
If your graphics card is bottlenecking the system, lowering the screen resolution will allow the card to handle data more efficiently, resulting in higher frames per second. However, it's worth noting that lower resolutions will require less data processing from the CPU, which could create a new bottleneck there.
Read moreOffers for Intel Core2 Duo E4500
Product name | Merchant | Available | Price |
Merchant
Available
Price
|
---|---|---|---|---|
Intel Core 2 Duo E4500 2.2GHz OEM CPU SLA95 HH80557PG0492M 1 new from 129.00 $. 1 used from 19.00 $. Last updated 37 minutes ago. |
Yes | 129.95 $ |
Yes
|
Product pricing and availability information was updated as of the date and time listed, but is subject to change. If you choose to purchase a product from a retailer, the price and availability displayed on their website at the time of purchase will apply. We may earn a commission from qualifying purchases made through the links to participating retailers on this site. However, this does not impact the products or prices that are displayed or the order in which prices are listed.
Bottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.