Hitman: Absolution bottleneck calculator
Intel Celeron D 360 and AMD Radeon Vega 3 Athlon 3000G
Hitman: Absolution
3200 × 2400
1 monitor
1. Select game
Currently selected:
Hitman: Absolution
2. Select processor
Currently selected:
Intel Celeron D 360
3. Select graphic card
Currently selected:
AMD Radeon Vega 3 Athlon 3000G
4. Select resolution
Currently selected:
3200 × 2400 resolution
(1 monitor)
Calculation result
Bottleneck percentage
The Intel Celeron D 360 may serve as a bottleneck for the AMD Radeon Vega 3 Athlon 3000G in the Hitman: Absolution with 3200 × 2400 and 1 monitor. Although the AMD Radeon Vega 3 Athlon 3000G is engineered to manage heavy graphical tasks, the Intel Celeron D 360 might lack the processing power needed to fully unlock the AMD Radeon Vega 3 Athlon 3000G capabilities. This imbalance may inhibit the overall efficiency of your system, slowing down processing and possibly compromising graphical fidelity. For a more harmonious hardware setup, upgrading to a high-performing processor that can meet the demands of current software and games is advised.
In a configuration featuring the Intel Celeron D 360 and AMD Radeon Vega 3 Athlon 3000G, with a screen resolution of 3200 × 2400 and 1 monitor, the system experiences a 10.2% bottleneck for Hitman: Absolution.
Processor and graphic card utilizations
In a computing setup featuring the Intel Celeron D 360 and AMD Radeon Vega 3 Athlon 3000G, under the context of Hitman: Absolution with a screen resolution of 3200 × 2400 and 1 monitor, the processor is expected to have an utilization rate of 79.4%, while the graphics card is projected to be utilized at 67.5%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
In gaming scenarios, your AMD Radeon Vega 3 Athlon 3000G might not attain its full performance potential due to a lack of optimal utilization. This happens when the Intel Celeron D 360 fails to handle and transmit data to the AMD Radeon Vega 3 Athlon 3000G at an adequate speed. As a result, the Intel Celeron D 360 will be operating at its maximum capacity, while the AMD Radeon Vega 3 Athlon 3000G remains underutilized.
When it comes to bottlenecks, a processor bottleneck is generally viewed as more detrimental than a graphics card bottleneck. In cases of a processor bottleneck, the Intel Celeron D 360 capacity reaches its limits, which may adversely affect other applications running concurrently. This situation can result in diminished responsiveness and multi-tasking capabilities.
Moreover, due to the processor bottleneck, the system might not leverage the full performance capabilities of the AMD Radeon Vega 3 Athlon 3000G. Consequently, there could be restrictions in graphical rendering, frame rates, and the overall gaming experience.
To visualize these bottlenecks, consider examining our heatmap. On this heatmap, the X-axis represents the CPU Score, while the Y-axis denotes the GPU Score. A quick glance at this heatmap can offer invaluable insights into potential bottlenecks within various system configurations.
By correlating your Intel Celeron D 360 CPU Score and AMD Radeon Vega 3 Athlon 3000G GPU Score on the heatmap, you can acquire a more comprehensive understanding of how these components interact and where the bottlenecks might occur. Making well-informed hardware choices based on this heatmap analysis can lead to a more balanced and efficient computing setup for your specific needs.
General bottleneck calculations
The bottleneck calculations presented here are geared specifically towards in-game scenarios, providing valuable insights into how your hardware configuration could impact gaming performance. However, it's crucial to understand that bottlenecks can manifest in various types of tasks and applications. Below, you will find bottleneck calculations segmented into three primary categories: General Tasks, CPU Intensive Tasks, and GPU Intensive Tasks. This segmentation allows for a more nuanced understanding of how your system's components interact under different types of workloads.
General tasks bottleneck result
For general tasks that include web browsing, video streaming, office applications, and basic multitasking, the bottleneck result offers a comprehensive look at how well your CPU and GPU are balanced. If the bottleneck percentage leans heavily towards either the CPU or GPU, it might be beneficial to consider an upgrade for the more taxed component to ensure smoother system performance.
CPU intensive tasks bottleneck result
When it comes to CPU intensive tasks, such as video editing, 3D rendering, or scientific computing, the bottleneck calculation primarily focuses on whether your processor is powerful enough to handle these workloads efficiently. Here, a high bottleneck percentage for the CPU would indicate that your processor is the limiting factor, making tasks slower than they could be with a more robust CPU.
GPU intensive tasks bottleneck result
In scenarios involving GPU intensive tasks—like advanced gaming, graphical rendering, or video processing—the bottleneck calculation highlights the efficiency of your graphics card in relation to the overall system. A high bottleneck percentage on the GPU side would suggest that your graphics card is the limiting component, potentially hindering your system's ability to deliver optimal graphical performance.
Bottleneck solutions
Replace processor
When the processor becomes the system's bottleneck, upgrading it is often the most straightforward way to improve performance. Opting for a faster processor with more cores and higher clock speeds can effectively minimize or even eliminate the bottleneck, making it easier for your graphics card to perform to its maximum capability.
- AMD Athlon 5200B Full details
- AMD Athlon 64 FX-60 Full details
- AMD Athlon 4450B Full details
- AMD Athlon II X2 260u Full details
- AMD Athlon 64 X2 4200+ Full details
- Intel Core2 Duo E6320 Full details
- AMD Athlon 64 X2 4600+ Full details
- Intel Pentium E2200 Full details
- Intel Celeron E1400 Full details
- Intel Core2 Duo E4500 Full details
- Intel Core2 Duo E6420 Full details
- Intel Core2 Duo E6400 Full details
- AMD Athlon 64 X2 5000+ Full details
- AMD Athlon 4850e Full details
- AMD Athlon 7450 Full details
- Intel Celeron E3300 Full details
- Intel Pentium D 960 Full details
- Intel Pentium 997 Full details
- AMD Athlon 64 X2 TK-57 Full details
- AMD Athlon 64 X2 3600+ Full details
- Intel Celeron E1500 Full details
- Intel Core2 Duo E6300 Full details
- Intel Pentium E2160 Full details
- AMD Athlon 64 X2 5800+ Full details
- Intel Celeron J3060 Full details
- Intel Core2 Duo E4400 Full details
- AMD Athlon 4050e Full details
- AMD Athlon X2 BE-2400 Full details
- AMD Athlon 64 X2 4400+ Full details
- AMD Athlon 64 X2 4800+ Full details
- Intel Pentium D 950 Full details
- Intel Pentium E2180 Full details
- AMD Athlon 64 X2 4000+ Full details
- Intel Pentium E2210 Full details
- AMD Athlon 4450e Full details
- AMD Athlon 64 X2 TK-53 Full details
- AMD Athlon X2 BE-2300 Full details
- Intel Celeron G470 Full details
- AMD Sempron 2650 Full details
- Intel Celeron J1800 Full details
- Intel Celeron 1019Y Full details
- AMD Athlon 64 X2 TK-42 Full details
- AMD Athlon X2 BE-2350 Full details
- AMD Opteron 180 Full details
- Intel Xeon 5130 Full details
- Intel Xeon E5503 Full details
- Intel Xeon 3050 Full details
- AMD Opteron 175 Full details
- AMD Opteron 185 Full details
- AMD Opteron 1212 Full details
Impact of Changing Screen Resolution
Interestingly, if you're facing a processor bottleneck, altering the screen resolution may have a counterintuitive impact. Elevating the screen resolution will primarily stress the graphics card, thereby reducing the proportion of work that the processor needs to do in certain tasks. This makes it less likely that the processor will max out, though it does not replace the benefits of a processor upgrade for a balanced system.
Read moreReplace graphic cards
If the processor is causing the bottleneck, replacing the graphic card isn't generally recommended unless you're also planning to upgrade the processor. Downgrading your graphics card to better match the processor might alleviate the bottleneck, but it often results in a decrease in overall system performance, especially in graphics-heavy tasks like gaming or 3D rendering.
- AMD Radeon E6760 Full details
- AMD Radeon R7 PRO A12-9800 Full details
- AMD Radeon HD 7670 Full details
- AMD Radeon R7 A10 PRO-7850B Full details
- AMD Radeon Vega 3 Full details
- AMD Radeon R7 PRO A8-9600 Full details
- AMD Radeon 620 Full details
- AMD Radeon R7 PRO A10-8770 Full details
- AMD Radeon R7 M440 Full details
- AMD Radeon R7 240 Full details
- AMD Radeon R7 PRO A12-8870 Full details
- AMD Radeon HD 4770 Full details
- AMD Radeon R7 A8-8650 Full details
- AMD Radeon R7 A12-9800E Radeon Full details
- NVIDIA GeForce GT 730 Full details
- AMD Radeon R7 PRO A10-8750B Full details
- AMD Radeon HD 4810 Full details
- NVIDIA GeForce GT 440 Full details
- AMD Radeon R7 M365X Full details
- AMD Radeon R7 A10-7700K Full details
- AMD Radeon R7 A8-7600 Full details
- AMD Radeon 535DX Full details
- AMD Radeon R8 M445DX Full details
- NVIDIA GeForce 9800 GX2 Full details
- AMD Radeon R7 PRO A10-9700 Full details
- AMD Radeon R5 M435 Full details
- AMD Radeon HD 5670 Full details
- AMD Radeon R7 A10 Extreme Edition Full details
- AMD Radeon R7 M260DX Full details
- AMD Radeon R7 A8-7680 Full details
- AMD Radeon R7 A10 PRO-7800B Full details
- AMD Radeon R7 PRO A10-8770E Full details
- AMD Radeon R7 A8-9600 Radeon Full details
- AMD Radeon R7 FX-8800P Full details
- NVIDIA GeForce GT 635 Full details
- AMD Radeon HD 4830 Full details
- AMD Radeon HD 6670 Full details
- AMD Radeon R7 A8-7670K Full details
- AMD Radeon R5 A6-9500 Full details
- AMD Radeon R7 A10-7890K Full details
- AMD Radeon R7 A10-8750 Full details
- AMD Radeon Vega 3 Athlon 300U Full details
- AMD Radeon 520 Full details
- AMD Radeon R7 M270 Full details
- AMD FirePro W2100 Full details
- NVIDIA GRID K220Q Full details
- NVIDIA Quadro 2000M Full details
- NVIDIA Quadro K1000M Full details
- NVIDIA Quadro FX 3800 Full details
- AMD FirePro 3D V4800 Full details
Impact of Changing Screen Resolution
Increasing the screen resolution in this case will demand more from your graphics card and can make the processor's bottleneck less noticeable in some scenarios, but again, it won't entirely solve the underlying problem.
Read moreBottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.