Total War: Rome II bottleneck calculator
Intel Xeon E5-2420 and AMD Radeon HD 6970
Total War: Rome II
1280 × 1024
1 monitor
1. Select game
Currently selected:
Total War: Rome II
2. Select processor
Currently selected:
Intel Xeon E5-2420
3. Select graphic card
Currently selected:
AMD Radeon HD 6970
4. Select resolution
Currently selected:
1280 × 1024 resolution
(1 monitor)
Calculation result
Bottleneck percentage
In a system configuration featuring the Intel Xeon E5-2420 and AMD Radeon HD 6970, the AMD Radeon HD 6970 could potentially act as a bottleneck to the Intel Xeon E5-2420 performance in the Total War: Rome II with 1280 × 1024 and 1 monitor. While the Intel Xeon E5-2420 is well-equipped to manage strenuous computational tasks, the AMD Radeon HD 6970 limited graphical prowess may compromise the overall system efficiency. This disparity could lead to decreased performance and less effective utilization of system resources. To rectify this imbalance, an upgrade to a more capable graphics card that complements the Intel Xeon E5-2420 processing abilities is advisable.
With a screen resolution of 1280 × 1024 and 1 monitor, this configuration demonstrates a 7.6% graphics card bottleneck when performing Total War: Rome II.
Processor and graphic card utilizations
In a computing setup featuring the Intel Xeon E5-2420 and AMD Radeon HD 6970, under the context of Total War: Rome II with a screen resolution of 1280 × 1024 and 1 monitor, the processor is expected to have an utilization rate of 69.6%, while the graphics card is projected to be utilized at 83.3%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
During gameplay scenarios, your Intel Xeon E5-2420 might not operate at its full potential due to the constraints imposed by the AMD Radeon HD 6970. In such cases, the AMD Radeon HD 6970 may struggle to swiftly process and relay data, resulting in underutilization of the Intel Xeon E5-2420. Therefore, the AMD Radeon HD 6970 will be operating at its maximum capacity, leaving the Intel Xeon E5-2420 capabilities untapped.
In the hierarchy of bottlenecks, a graphics card bottleneck is often considered less severe than a processor bottleneck. When a graphics card bottleneck occurs, the AMD Radeon HD 6970 operates at its uppermost limits, thereby allowing you to extract the best performance possible from the card. This ensures that you benefit from the full scope of the AMD Radeon HD 6970 features.
One distinct advantage of not maxing out the Intel Xeon E5-2420 is the enhanced ability to efficiently manage other background tasks. As the Intel Xeon E5-2420 is not operating at full capacity while gaming, it can allocate computational resources to other ongoing activities like background processes or multitasking, without any performance trade-offs. This contributes to a smoother and more flexible overall system operation.
To gain a deeper understanding of these potential bottlenecks, consider referring to our heatmap. On the heatmap, the X-axis depicts the CPU Score, and the Y-axis signifies the GPU Score. This visualization can help identify the relationship between various CPUs and GPUs, giving you valuable insights into how to better balance your system.
By matching your Intel Xeon E5-2420 CPU Score with the AMD Radeon HD 6970 GPU Score on the heatmap, you can more accurately assess how these components interact and pinpoint where bottlenecks may occur. Utilizing this heatmap analysis can guide you in making informed hardware decisions that lead to a more balanced and effective computing setup tailored to your specific needs.
General bottleneck calculations
The bottleneck calculations presented here are geared specifically towards in-game scenarios, providing valuable insights into how your hardware configuration could impact gaming performance. However, it's crucial to understand that bottlenecks can manifest in various types of tasks and applications. Below, you will find bottleneck calculations segmented into three primary categories: General Tasks, CPU Intensive Tasks, and GPU Intensive Tasks. This segmentation allows for a more nuanced understanding of how your system's components interact under different types of workloads.
General tasks bottleneck result
For general tasks that include web browsing, video streaming, office applications, and basic multitasking, the bottleneck result offers a comprehensive look at how well your CPU and GPU are balanced. If the bottleneck percentage leans heavily towards either the CPU or GPU, it might be beneficial to consider an upgrade for the more taxed component to ensure smoother system performance.
CPU intensive tasks bottleneck result
When it comes to CPU intensive tasks, such as video editing, 3D rendering, or scientific computing, the bottleneck calculation primarily focuses on whether your processor is powerful enough to handle these workloads efficiently. Here, a high bottleneck percentage for the CPU would indicate that your processor is the limiting factor, making tasks slower than they could be with a more robust CPU.
GPU intensive tasks bottleneck result
In scenarios involving GPU intensive tasks—like advanced gaming, graphical rendering, or video processing—the bottleneck calculation highlights the efficiency of your graphics card in relation to the overall system. A high bottleneck percentage on the GPU side would suggest that your graphics card is the limiting component, potentially hindering your system's ability to deliver optimal graphical performance.
Bottleneck solutions
Replace processor
If your graphic card is causing the bottleneck but you're considering replacing your processor, reconsider this approach. Unless your processor is already on the verge of becoming outdated, upgrading it might not offer a significant performance boost, particularly in graphics-heavy tasks.
- Intel Core i3-7100 Full details
- Intel Core i3-6100 Full details
- AMD FX-6300 Full details
- AMD Ryzen 3 PRO 2100GE Full details
- Intel Core i5-3330 Full details
- AMD PRO A12-8870 Full details
- Intel Core i3-6300T Full details
- Intel Core i3-6098P Full details
- AMD FX-8100 Full details
- Intel Core i5-4590T Full details
- Intel Celeron N5095 Full details
- AMD FX-6200 Full details
- Intel Core i5-3570T Full details
- AMD Athlon 200GE Full details
- Intel Core i5-2500K Full details
- Intel Core i5-2500 Full details
- Intel Pentium Gold G6400 Full details
- Intel Celeron N5095A Full details
- Intel Core i5-2550K Full details
- Intel Pentium Gold G6500 Full details
- Intel Core i5-2450P Full details
- Intel Core i3-7300T Full details
- Intel Core i5-3340 Full details
- Intel Pentium Gold G6405 Full details
- Intel Core i5-3475S Full details
- AMD Athlon 300GE Full details
- Intel Core i5-3350P Full details
- Intel Core i5-6400T Full details
- Intel Core i5-4430S Full details
- Intel Core i3-6300 Full details
- Intel Core i5-2400 Full details
- Intel Core i3-4170 Full details
- AMD Athlon X4 950 Full details
- AMD A12-9800 Full details
- Intel Pentium G4600 Full details
- Intel Core i3-4360 Full details
- Intel Core i5-2310 Full details
- Intel Core i5-4460T Full details
- AMD PRO A10-9700 Full details
- Intel Core i3-6100T Full details
- AMD Athlon X4 880K Full details
- Intel Core i5-2320 Full details
- AMD FX-6100 Full details
- AMD PRO A12-9800 Full details
- Intel Xeon E3-1260L Full details
- AMD Opteron 3365 Full details
- Intel Xeon E5-1607 v2 Full details
- Intel Xeon W3580 Full details
- Intel Xeon E5640 Full details
- Intel Xeon L5638 Full details
Impact of Changing Screen Resolution
Increasing the resolution in this scenario will only make the bottleneck worse, as the GPU will be under even more stress, leading to lower frame rates and reduced graphical quality. It won't significantly ease the load on the already underutilized processor.
Read moreReplace graphic cards
When the graphic card becomes a system bottleneck, upgrading it can provide a significant boost in performance. Opt for a card that better matches the capabilities of your processor to get a more balanced system. This will also enable you to run games and applications at higher settings, offering a vastly improved user experience.
- AMD Radeon Eng Sample: 100-000000560-40_Y Full details
- AMD Radeon Sky 500 Full details
- AMD Radeon HD 7950 Full details
- AMD Radeon HD 7870 XT Full details
- NVIDIA GeForce GTX 580 Full details
- AMD Radeon HD 7870 Full details
- AMD Radeon R9 270 Full details
- AMD Radeon R7 370 Full details
- NVIDIA GeForce GTX 660 Ti Full details
- NVIDIA GeForce GTX 660 Full details
- AMD Radeon RX 460 Full details
- NVIDIA GeForce GTX 480 Full details
- NVIDIA GeForce GTX 750 Ti Full details
- AMD Radeon HD 7850 Full details
- NVIDIA GeForce GTX 570 Full details
- AMD Radeon RX 560 Full details
- AMD Radeon Pro WX 4100 Full details
- AMD Radeon RX Vega M GL Full details
- NVIDIA GeForce GTX 750 Full details
- NVIDIA GeForce GTX 650 Ti BOOST Full details
- NVIDIA GeForce GTX 590 Full details
- NVIDIA GeForce GTX 560 Ti Full details
- AMD Radeon R7 260X Full details
- AMD Radeon RX 560X Full details
- NVIDIA GeForce GTX 470 Full details
- AMD Radeon R7 360 Full details
- AMD Radeon HD 7790 Full details
- AMD Radeon R9 360 Full details
- AMD Radeon HD 6990 Full details
- AMD Radeon R7 260 Full details
- AMD FirePro W7000 Full details
- NVIDIA Quadro K4200 Full details
- AMD FirePro W7000 Adapter Full details
- NVIDIA Quadro P1000 Full details
- NVIDIA Quadro M2000 Full details
- NVIDIA Quadro K5000 Full details
- AMD FirePro W8000 Full details
- NVIDIA GRID K520 Full details
- NVIDIA Quadro K2200 Full details
- NVIDIA Quadro P620 Full details
- NVIDIA Quadro P600 Full details
- AMD FirePro W7170M Full details
- NVIDIA Tesla C2070 Full details
- NVIDIA Quadro K5100M Full details
- AMD FirePro W5100 Full details
- AMD FirePro W5000 Full details
- NVIDIA Quadro K1200 Full details
- AMD FirePro M6100 FireGL V Full details
- NVIDIA GRID K280Q Full details
- AMD FirePro W4300 Full details
Impact of Changing Screen Resolution
If your graphics card is bottlenecking the system, lowering the screen resolution will allow the card to handle data more efficiently, resulting in higher frames per second. However, it's worth noting that lower resolutions will require less data processing from the CPU, which could create a new bottleneck there.
Read moreBottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.