Battlefield V bottleneck calculator
AMD Athlon 64 FX-57 and NVIDIA GeForce GTX 550 Ti
Battlefield V
1600 × 900
1 monitor
1. Select game
Currently selected:
Battlefield V
2. Select processor
Currently selected:
AMD Athlon 64 FX-57
3. Select graphic card
Currently selected:
NVIDIA GeForce GTX 550 Ti
4. Select resolution
Currently selected:
1600 × 900 resolution
(1 monitor)
Calculation result
Bottleneck percentage
The AMD Athlon 64 FX-57 may serve as a bottleneck for the NVIDIA GeForce GTX 550 Ti in the Battlefield V with 1600 × 900 and 1 monitor. Although the NVIDIA GeForce GTX 550 Ti is engineered to manage heavy graphical tasks, the AMD Athlon 64 FX-57 might lack the processing power needed to fully unlock the NVIDIA GeForce GTX 550 Ti capabilities. This imbalance may inhibit the overall efficiency of your system, slowing down processing and possibly compromising graphical fidelity. For a more harmonious hardware setup, upgrading to a high-performing processor that can meet the demands of current software and games is advised.
In a configuration featuring the AMD Athlon 64 FX-57 and NVIDIA GeForce GTX 550 Ti, with a screen resolution of 1600 × 900 and 1 monitor, the system experiences a 1.2% bottleneck for Battlefield V.
Processor and graphic card utilizations
In a computing setup featuring the AMD Athlon 64 FX-57 and NVIDIA GeForce GTX 550 Ti, under the context of Battlefield V with a screen resolution of 1600 × 900 and 1 monitor, the processor is expected to have an utilization rate of 75.9%, while the graphics card is projected to be utilized at 73.5%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
In gaming scenarios, your NVIDIA GeForce GTX 550 Ti might not attain its full performance potential due to a lack of optimal utilization. This happens when the AMD Athlon 64 FX-57 fails to handle and transmit data to the NVIDIA GeForce GTX 550 Ti at an adequate speed. As a result, the AMD Athlon 64 FX-57 will be operating at its maximum capacity, while the NVIDIA GeForce GTX 550 Ti remains underutilized.
When it comes to bottlenecks, a processor bottleneck is generally viewed as more detrimental than a graphics card bottleneck. In cases of a processor bottleneck, the AMD Athlon 64 FX-57 capacity reaches its limits, which may adversely affect other applications running concurrently. This situation can result in diminished responsiveness and multi-tasking capabilities.
Moreover, due to the processor bottleneck, the system might not leverage the full performance capabilities of the NVIDIA GeForce GTX 550 Ti. Consequently, there could be restrictions in graphical rendering, frame rates, and the overall gaming experience.
To visualize these bottlenecks, consider examining our heatmap. On this heatmap, the X-axis represents the CPU Score, while the Y-axis denotes the GPU Score. A quick glance at this heatmap can offer invaluable insights into potential bottlenecks within various system configurations.
By correlating your AMD Athlon 64 FX-57 CPU Score and NVIDIA GeForce GTX 550 Ti GPU Score on the heatmap, you can acquire a more comprehensive understanding of how these components interact and where the bottlenecks might occur. Making well-informed hardware choices based on this heatmap analysis can lead to a more balanced and efficient computing setup for your specific needs.
General bottleneck calculations
The bottleneck calculations presented here are geared specifically towards in-game scenarios, providing valuable insights into how your hardware configuration could impact gaming performance. However, it's crucial to understand that bottlenecks can manifest in various types of tasks and applications. Below, you will find bottleneck calculations segmented into three primary categories: General Tasks, CPU Intensive Tasks, and GPU Intensive Tasks. This segmentation allows for a more nuanced understanding of how your system's components interact under different types of workloads.
General tasks bottleneck result
For general tasks that include web browsing, video streaming, office applications, and basic multitasking, the bottleneck result offers a comprehensive look at how well your CPU and GPU are balanced. If the bottleneck percentage leans heavily towards either the CPU or GPU, it might be beneficial to consider an upgrade for the more taxed component to ensure smoother system performance.
CPU intensive tasks bottleneck result
When it comes to CPU intensive tasks, such as video editing, 3D rendering, or scientific computing, the bottleneck calculation primarily focuses on whether your processor is powerful enough to handle these workloads efficiently. Here, a high bottleneck percentage for the CPU would indicate that your processor is the limiting factor, making tasks slower than they could be with a more robust CPU.
GPU intensive tasks bottleneck result
In scenarios involving GPU intensive tasks—like advanced gaming, graphical rendering, or video processing—the bottleneck calculation highlights the efficiency of your graphics card in relation to the overall system. A high bottleneck percentage on the GPU side would suggest that your graphics card is the limiting component, potentially hindering your system's ability to deliver optimal graphical performance.
Bottleneck solutions
Replace processor
When the processor becomes the system's bottleneck, upgrading it is often the most straightforward way to improve performance. Opting for a faster processor with more cores and higher clock speeds can effectively minimize or even eliminate the bottleneck, making it easier for your graphics card to perform to its maximum capability.
- AMD E2-3200 Full details
- Intel Pentium E5400 Full details
- AMD Athlon II X2 215 Full details
- Intel Core2 Duo E8135 Full details
- AMD Athlon 5200B Full details
- Intel Celeron E3200 Full details
- AMD Athlon 64 X2 5200+ Full details
- AMD Athlon 5050e Full details
- Intel Pentium E2220 Full details
- Intel Celeron E3400 Full details
- AMD Athlon 5000B Full details
- Intel Core2 Duo E4600 Full details
- AMD Athlon 5200 Full details
- AMD Athlon 5000 Full details
- Intel Core2 Duo E6550 Full details
- Intel Pentium G620T Full details
- Intel Pentium E5300 Full details
- AMD Athlon 7550 Full details
- AMD Athlon 64 X2 5400+ Full details
- AMD Athlon 64 X2 5600+ Full details
- Intel Core2 Duo E4700 Full details
- AMD Athlon 5400B Full details
- Intel Pentium E5200 Full details
- AMD Athlon 64 X2 6000+ Full details
- Intel Celeron E3500 Full details
- Intel Core2 Duo E6600 Full details
- AMD A4-3300 Full details
- AMD Athlon II X2 4400e Full details
- Intel Core2 Duo E7300 Full details
- AMD Athlon 64 FX-60 Full details
- AMD Athlon 4450B Full details
- AMD Athlon II X2 260u Full details
- AMD Athlon 64 X2 4200+ Full details
- Intel Core2 Duo E6320 Full details
- AMD Athlon 64 X2 4600+ Full details
- Intel Pentium E2200 Full details
- Intel Celeron E1400 Full details
- Intel Core2 Duo E4500 Full details
- Intel Core2 Duo E6420 Full details
- Intel Core2 Duo E6400 Full details
- AMD Athlon 64 X2 5000+ Full details
- AMD Athlon 4850e Full details
- AMD Athlon 7450 Full details
- Intel Xeon 5160 Full details
- Intel Xeon 3060 Full details
- Intel Xeon 5140 Full details
- Intel Xeon 3065 Full details
- Intel Xeon Full details
- Intel Xeon 5150 Full details
- AMD Opteron 180 Full details
Impact of Changing Screen Resolution
Interestingly, if you're facing a processor bottleneck, altering the screen resolution may have a counterintuitive impact. Elevating the screen resolution will primarily stress the graphics card, thereby reducing the proportion of work that the processor needs to do in certain tasks. This makes it less likely that the processor will max out, though it does not replace the benefits of a processor upgrade for a balanced system.
Read moreReplace graphic cards
If the processor is causing the bottleneck, replacing the graphic card isn't generally recommended unless you're also planning to upgrade the processor. Downgrading your graphics card to better match the processor might alleviate the bottleneck, but it often results in a decrease in overall system performance, especially in graphics-heavy tasks like gaming or 3D rendering.
- AMD Radeon Vega 10 Full details
- NVIDIA GeForce GTX 555 Full details
- AMD Radeon Vega 9 Full details
- AMD Radeon RX Vega11 Full details
- AMD Radeon HD 6790 Full details
- NVIDIA GeForce GTX 275 Full details
- AMD Radeon 540X Full details
- AMD Radeon 550X Full details
- AMD Radeon R9 255 Full details
- AMD Radeon R7 FX-9830P Radeon Full details
- AMD Radeon RX Vega 8 Full details
- NVIDIA GeForce GT 740 Full details
- AMD Radeon HD 4890 Full details
- NVIDIA GeForce GTX 285 Full details
- AMD Radeon 630 Full details
- NVIDIA GeForce GTX 280 Full details
- AMD Radeon HD 4870 X2 Full details
- AMD Radeon Vega 6 Full details
- NVIDIA GeForce GTS 450 Full details
- AMD Radeon HD 5770 Full details
- AMD Radeon HD 4870 Full details
- AMD Radeon 540 Full details
- AMD Radeon HD 5750 Full details
- AMD Radeon R7 Opteron X3421 Full details
- NVIDIA GeForce GT 640 Full details
- AMD Radeon HD 7730 Full details
- NVIDIA GeForce GTX 295 Full details
- NVIDIA GeForce GTX 260 Full details
- AMD Radeon HD 6770 Full details
- AMD Radeon HD 4850 X2 Full details
- AMD Radeon R7 A10-7870K Full details
- NVIDIA GeForce GT 545 Full details
- AMD Radeon R7 M465 Full details
- AMD Radeon R7 430 Full details
- AMD Radeon R7 M350 Full details
- NVIDIA Quadro K2000 Full details
- NVIDIA Quadro K2000D Full details
- AMD FirePro M4000 Full details
- AMD FirePro W5130M Full details
- NVIDIA Quadro 4000 Full details
- AMD FirePro W4100 Full details
- AMD FirePro V5900 Full details
- NVIDIA Quadro 4000M Full details
- NVIDIA Quadro K2100M Full details
- AMD FirePro V5800 Full details
- AMD FirePro 3D V8700 Full details
- NVIDIA Quadro FX 5800 Full details
- AMD FirePro 3D V5800 Full details
- AMD Firepro W4190M Full details
- AMD FirePro M4170 Full details
Impact of Changing Screen Resolution
Increasing the screen resolution in this case will demand more from your graphics card and can make the processor's bottleneck less noticeable in some scenarios, but again, it won't entirely solve the underlying problem.
Read moreOffers for NVIDIA GeForce GTX 550 Ti
Product name | Merchant | Available | Price |
Merchant
Available
Price
|
---|---|---|---|---|
Yes | 72.02 $ |
Yes
|
||
Yes | 118.00 $ |
Yes
|
||
1 new from 124.00 $. 1 used from 65.00 $. Last updated 34 minutes ago. |
Yes | 124.99 $ |
Yes
|
Product pricing and availability information was updated as of the date and time listed, but is subject to change. If you choose to purchase a product from a retailer, the price and availability displayed on their website at the time of purchase will apply. We may earn a commission from qualifying purchases made through the links to participating retailers on this site. However, this does not impact the products or prices that are displayed or the order in which prices are listed.
Bottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.