Call of Duty: WWII bottleneck calculator
Intel Core i3-2100T and NVIDIA Quadro K5000
Call of Duty: WWII
6400 × 4096
1 monitor
1. Select game
Currently selected:
Call of Duty: WWII
2. Select processor
Currently selected:
Intel Core i3-2100T
3. Select graphic card
Currently selected:
NVIDIA Quadro K5000
4. Select resolution
Currently selected:
6400 × 4096 resolution
(1 monitor)
Calculation result
Bottleneck percentage
The Intel Core i3-2100T may serve as a bottleneck for the NVIDIA Quadro K5000 in the Call of Duty: WWII with 6400 × 4096 and 1 monitor. Although the NVIDIA Quadro K5000 is engineered to manage heavy graphical tasks, the Intel Core i3-2100T might lack the processing power needed to fully unlock the NVIDIA Quadro K5000 capabilities. This imbalance may inhibit the overall efficiency of your system, slowing down processing and possibly compromising graphical fidelity. For a more harmonious hardware setup, upgrading to a high-performing processor that can meet the demands of current software and games is advised.
In a configuration featuring the Intel Core i3-2100T and NVIDIA Quadro K5000, with a screen resolution of 6400 × 4096 and 1 monitor, the system experiences a 1.7% bottleneck for Call of Duty: WWII.
Processor and graphic card utilizations
In a computing setup featuring the Intel Core i3-2100T and NVIDIA Quadro K5000, under the context of Call of Duty: WWII with a screen resolution of 6400 × 4096 and 1 monitor, the processor is expected to have an utilization rate of 83%, while the graphics card is projected to be utilized at 74%.
It's crucial to understand that these figures signify theoretical maximums based on typical CPU-to-GPU workload distribution ratios for certain tasks or gaming experiences. Achieving these high levels of utilization in real-world settings can be a challenging endeavor.
Playability
- Playable
- Frames per second
-
A game is considered "playable" if it can consistently run at 60 FPS on high settings. This ensures a smooth and visually appealing gaming experience free from lags or stutters.
Heatmap of bottleneck
In gaming scenarios, your NVIDIA Quadro K5000 might not attain its full performance potential due to a lack of optimal utilization. This happens when the Intel Core i3-2100T fails to handle and transmit data to the NVIDIA Quadro K5000 at an adequate speed. As a result, the Intel Core i3-2100T will be operating at its maximum capacity, while the NVIDIA Quadro K5000 remains underutilized.
When it comes to bottlenecks, a processor bottleneck is generally viewed as more detrimental than a graphics card bottleneck. In cases of a processor bottleneck, the Intel Core i3-2100T capacity reaches its limits, which may adversely affect other applications running concurrently. This situation can result in diminished responsiveness and multi-tasking capabilities.
Moreover, due to the processor bottleneck, the system might not leverage the full performance capabilities of the NVIDIA Quadro K5000. Consequently, there could be restrictions in graphical rendering, frame rates, and the overall gaming experience.
To visualize these bottlenecks, consider examining our heatmap. On this heatmap, the X-axis represents the CPU Score, while the Y-axis denotes the GPU Score. A quick glance at this heatmap can offer invaluable insights into potential bottlenecks within various system configurations.
By correlating your Intel Core i3-2100T CPU Score and NVIDIA Quadro K5000 GPU Score on the heatmap, you can acquire a more comprehensive understanding of how these components interact and where the bottlenecks might occur. Making well-informed hardware choices based on this heatmap analysis can lead to a more balanced and efficient computing setup for your specific needs.
General bottleneck calculations
The bottleneck calculations presented here are geared specifically towards in-game scenarios, providing valuable insights into how your hardware configuration could impact gaming performance. However, it's crucial to understand that bottlenecks can manifest in various types of tasks and applications. Below, you will find bottleneck calculations segmented into three primary categories: General Tasks, CPU Intensive Tasks, and GPU Intensive Tasks. This segmentation allows for a more nuanced understanding of how your system's components interact under different types of workloads.
General tasks bottleneck result
For general tasks that include web browsing, video streaming, office applications, and basic multitasking, the bottleneck result offers a comprehensive look at how well your CPU and GPU are balanced. If the bottleneck percentage leans heavily towards either the CPU or GPU, it might be beneficial to consider an upgrade for the more taxed component to ensure smoother system performance.
CPU intensive tasks bottleneck result
When it comes to CPU intensive tasks, such as video editing, 3D rendering, or scientific computing, the bottleneck calculation primarily focuses on whether your processor is powerful enough to handle these workloads efficiently. Here, a high bottleneck percentage for the CPU would indicate that your processor is the limiting factor, making tasks slower than they could be with a more robust CPU.
GPU intensive tasks bottleneck result
In scenarios involving GPU intensive tasks—like advanced gaming, graphical rendering, or video processing—the bottleneck calculation highlights the efficiency of your graphics card in relation to the overall system. A high bottleneck percentage on the GPU side would suggest that your graphics card is the limiting component, potentially hindering your system's ability to deliver optimal graphical performance.
Bottleneck solutions
Replace processor
When the processor becomes the system's bottleneck, upgrading it is often the most straightforward way to improve performance. Opting for a faster processor with more cores and higher clock speeds can effectively minimize or even eliminate the bottleneck, making it easier for your graphics card to perform to its maximum capability.
- AMD A6-7480 Full details
- Intel Core i3-2105 Full details
- Intel Pentium G3260T Full details
- AMD Phenom 9750 Full details
- Intel Core i3-2100 Full details
- AMD A6-3620 Full details
- AMD Athlon 5370 Full details
- AMD Athlon II X3 455 Full details
- AMD A6-9500 Full details
- AMD Phenom 9950 Full details
- Intel Core2 Quad Q8300 Full details
- Intel Pentium G3220 Full details
- Intel Pentium G2120 Full details
- AMD PRO A6-8570 Full details
- Intel Celeron G1850 Full details
- Intel Core2 Extreme Q9300 Full details
- Intel Pentium G2130 Full details
- Intel Pentium G3420 Full details
- AMD Phenom II X4 905e Full details
- Intel Core i3-3220T Full details
- Intel Pentium G3240 Full details
- Intel Core i3-2120 Full details
- AMD Phenom II X4 805 Full details
- AMD Athlon II X4 605e Full details
- AMD Athlon II X4 610e Full details
- Intel Core2 Quad Q9300 Full details
- Intel Pentium G3250 Full details
- Intel Core i5-2415M Full details
- Intel Core i7-2655LE Full details
- AMD Athlon II X4 615e Full details
- AMD Phenom II X4 810 Full details
- AMD Athlon II X3 460 Full details
- AMD Athlon II X4 620 Full details
- Intel Core i5-655K Full details
- Intel Core i3-4330TE Full details
- Intel Core i3-3240T Full details
- Intel Celeron G3900T Full details
- Intel Core i3-2130 Full details
- Intel Core i3-560 Full details
- Intel Xeon X3323 Full details
- Intel Xeon E5345 Full details
- Intel Xeon L5410 Full details
- Intel Xeon E5507 Full details
- Intel Xeon E5603 Full details
- Intel Xeon E5506 Full details
- Intel Xeon X3220 Full details
- Intel Xeon X5355 Full details
- Intel Xeon X3320 Full details
- Intel Xeon E5410 Full details
- Intel Xeon E5420 Full details
Impact of Changing Screen Resolution
Interestingly, if you're facing a processor bottleneck, altering the screen resolution may have a counterintuitive impact. Elevating the screen resolution will primarily stress the graphics card, thereby reducing the proportion of work that the processor needs to do in certain tasks. This makes it less likely that the processor will max out, though it does not replace the benefits of a processor upgrade for a balanced system.
Read moreReplace graphic cards
If the processor is causing the bottleneck, replacing the graphic card isn't generally recommended unless you're also planning to upgrade the processor. Downgrading your graphics card to better match the processor might alleviate the bottleneck, but it often results in a decrease in overall system performance, especially in graphics-heavy tasks like gaming or 3D rendering.
- NVIDIA GeForce GTX 660 Full details
- AMD Radeon RX 460 Full details
- NVIDIA GeForce GTX 480 Full details
- NVIDIA GeForce GTX 750 Ti Full details
- AMD Radeon HD 7850 Full details
- NVIDIA GeForce GTX 570 Full details
- AMD Radeon RX 560 Full details
- AMD Radeon Pro WX 4100 Full details
- AMD Radeon RX Vega M GL Full details
- NVIDIA GeForce GTX 750 Full details
- NVIDIA GeForce GTX 650 Ti BOOST Full details
- NVIDIA GeForce GTX 590 Full details
- NVIDIA GeForce GTX 560 Ti Full details
- AMD Radeon R9 360 Full details
- AMD Radeon HD 7790 Full details
- AMD Radeon R7 360 Full details
- NVIDIA GeForce GTX 470 Full details
- AMD Radeon R7 260X Full details
- AMD Radeon RX 560X Full details
- AMD Radeon HD 6970 Full details
- AMD Radeon R7 260 Full details
- AMD Radeon HD 6990 Full details
- AMD Radeon RX 550 Full details
- NVIDIA GeForce GTX 560 Full details
- AMD Radeon HD 8950 Full details
- NVIDIA GeForce GTX 465 Full details
- AMD Radeon HD 6950 Full details
- NVIDIA GeForce GTX 650 Ti Full details
- NVIDIA Quadro M2000 Full details
- AMD FirePro W8000 Full details
- NVIDIA GRID K520 Full details
- NVIDIA Quadro K2200 Full details
- NVIDIA Quadro P620 Full details
- NVIDIA Quadro P600 Full details
- NVIDIA Quadro K5100M Full details
- NVIDIA Tesla C2070 Full details
- AMD FirePro W7170M Full details
- AMD FirePro W4300 Full details
- NVIDIA GRID K280Q Full details
- AMD FirePro M6100 FireGL V Full details
- NVIDIA Quadro K1200 Full details
- AMD FirePro W5000 Full details
- AMD FirePro W5100 Full details
- NVIDIA Quadro K4100M Full details
- NVIDIA Quadro K5000M Full details
- NVIDIA GRID K2 Full details
- NVIDIA Quadro K4000 Full details
- AMD FirePro V9800 Full details
- NVIDIA Quadro 6000 Full details
- AMD Radeon Pro WX 3100 Full details
Impact of Changing Screen Resolution
Increasing the screen resolution in this case will demand more from your graphics card and can make the processor's bottleneck less noticeable in some scenarios, but again, it won't entirely solve the underlying problem.
Read moreOffers for NVIDIA Quadro K5000
Product pricing and availability information was updated as of the date and time listed, but is subject to change. If you choose to purchase a product from a retailer, the price and availability displayed on their website at the time of purchase will apply. We may earn a commission from qualifying purchases made through the links to participating retailers on this site. However, this does not impact the products or prices that are displayed or the order in which prices are listed.
Bottleneck calculator types
Select purpose bottleneck calculator
Before selecting a bottleneck calculator, consider your primary computing tasks. For general activities like web browsing and office work, the calculator evaluates the balance between your CPU and GPU. If you focus on CPU-intensive tasks like video editing or 3D rendering, the tool will highlight processor performance. For GPU-centric tasks such as gaming or graphical rendering, it will assess the efficiency of your graphics card. Choose the appropriate calculator to accurately identify potential system bottlenecks for your specific use-case.
Select game bottleneck calculator
By selecting a game from the list, the calculator will analyze potential bottlenecks specifically tailored to that game's system requirements and graphical demands. This allows you to optimize your setup for a smoother, more responsive gaming experience. Choose the game that aligns with your interests to get the relevant bottleneck analysis.